![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 0lt1 | Unicode version |
Description: 0 is less than 1. Theorem I.21 of [Apostol] p. 20. (Contributed by NM, 17-Jan-1997.) |
Ref | Expression |
---|---|
0lt1 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 9046 |
. . 3
![]() ![]() ![]() ![]() | |
2 | ax-1ne0 9015 |
. . 3
![]() ![]() ![]() ![]() | |
3 | msqgt0 9504 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | mp2an 654 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | ax-1cn 9004 |
. . 3
![]() ![]() ![]() ![]() | |
6 | 5 | mulid1i 9048 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 4, 6 | breqtri 4195 |
1
![]() ![]() ![]() ![]() |
Copyright terms: Public domain | W3C validator |