MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nrp Unicode version

Theorem 0nrp 10380
Description: Zero is not a positive real. Axiom 9 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
Assertion
Ref Expression
0nrp  |-  -.  0  e.  RR+

Proof of Theorem 0nrp
StepHypRef Expression
1 0re 8834 . . 3  |-  0  e.  RR
21ltnri 8925 . 2  |-  -.  0  <  0
3 rpgt0 10361 . 2  |-  ( 0  e.  RR+  ->  0  <  0 )
42, 3mto 167 1  |-  -.  0  e.  RR+
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 1685   class class class wbr 4024   0cc0 8733    < clt 8863   RR+crp 10350
This theorem is referenced by:  itg2gt0  19111  dvrelog  19980  logdmn0  19983
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-i2m1 8801  ax-1ne0 8802  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-po 4313  df-so 4314  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-pnf 8865  df-mnf 8866  df-ltxr 8868  df-rp 10351
  Copyright terms: Public domain W3C validator