MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0plef Unicode version

Theorem 0plef 19433
Description: Two ways to say that the function  F on the reals is nonnegative. (Contributed by Mario Carneiro, 17-Aug-2014.)
Assertion
Ref Expression
0plef  |-  ( F : RR --> ( 0 [,)  +oo )  <->  ( F : RR --> RR  /\  0 p  o R  <_  F
) )

Proof of Theorem 0plef
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 0re 9026 . . . 4  |-  0  e.  RR
2 pnfxr 10647 . . . 4  |-  +oo  e.  RR*
3 icossre 10925 . . . 4  |-  ( ( 0  e.  RR  /\  +oo 
e.  RR* )  ->  (
0 [,)  +oo )  C_  RR )
41, 2, 3mp2an 654 . . 3  |-  ( 0 [,)  +oo )  C_  RR
5 fss 5541 . . 3  |-  ( ( F : RR --> ( 0 [,)  +oo )  /\  (
0 [,)  +oo )  C_  RR )  ->  F : RR
--> RR )
64, 5mpan2 653 . 2  |-  ( F : RR --> ( 0 [,)  +oo )  ->  F : RR --> RR )
7 ffvelrn 5809 . . . . 5  |-  ( ( F : RR --> RR  /\  x  e.  RR )  ->  ( F `  x
)  e.  RR )
8 elrege0 10941 . . . . . 6  |-  ( ( F `  x )  e.  ( 0 [,) 
+oo )  <->  ( ( F `  x )  e.  RR  /\  0  <_ 
( F `  x
) ) )
98baib 872 . . . . 5  |-  ( ( F `  x )  e.  RR  ->  (
( F `  x
)  e.  ( 0 [,)  +oo )  <->  0  <_  ( F `  x ) ) )
107, 9syl 16 . . . 4  |-  ( ( F : RR --> RR  /\  x  e.  RR )  ->  ( ( F `  x )  e.  ( 0 [,)  +oo )  <->  0  <_  ( F `  x ) ) )
1110ralbidva 2667 . . 3  |-  ( F : RR --> RR  ->  ( A. x  e.  RR  ( F `  x )  e.  ( 0 [,) 
+oo )  <->  A. x  e.  RR  0  <_  ( F `  x )
) )
12 ffn 5533 . . . 4  |-  ( F : RR --> RR  ->  F  Fn  RR )
13 ffnfv 5835 . . . . 5  |-  ( F : RR --> ( 0 [,)  +oo )  <->  ( F  Fn  RR  /\  A. x  e.  RR  ( F `  x )  e.  ( 0 [,)  +oo )
) )
1413baib 872 . . . 4  |-  ( F  Fn  RR  ->  ( F : RR --> ( 0 [,)  +oo )  <->  A. x  e.  RR  ( F `  x )  e.  ( 0 [,)  +oo )
) )
1512, 14syl 16 . . 3  |-  ( F : RR --> RR  ->  ( F : RR --> ( 0 [,)  +oo )  <->  A. x  e.  RR  ( F `  x )  e.  ( 0 [,)  +oo )
) )
16 0cn 9019 . . . . . . 7  |-  0  e.  CC
17 fnconstg 5573 . . . . . . 7  |-  ( 0  e.  CC  ->  ( CC  X.  { 0 } )  Fn  CC )
1816, 17ax-mp 8 . . . . . 6  |-  ( CC 
X.  { 0 } )  Fn  CC
19 df-0p 19431 . . . . . . 7  |-  0 p  =  ( CC  X.  { 0 } )
2019fneq1i 5481 . . . . . 6  |-  ( 0 p  Fn  CC  <->  ( CC  X.  { 0 } )  Fn  CC )
2118, 20mpbir 201 . . . . 5  |-  0 p  Fn  CC
2221a1i 11 . . . 4  |-  ( F : RR --> RR  ->  0 p  Fn  CC )
23 cnex 9006 . . . . 5  |-  CC  e.  _V
2423a1i 11 . . . 4  |-  ( F : RR --> RR  ->  CC  e.  _V )
25 reex 9016 . . . . 5  |-  RR  e.  _V
2625a1i 11 . . . 4  |-  ( F : RR --> RR  ->  RR  e.  _V )
27 ax-resscn 8982 . . . . 5  |-  RR  C_  CC
28 sseqin2 3505 . . . . 5  |-  ( RR  C_  CC  <->  ( CC  i^i  RR )  =  RR )
2927, 28mpbi 200 . . . 4  |-  ( CC 
i^i  RR )  =  RR
30 0pval 19432 . . . . 5  |-  ( x  e.  CC  ->  (
0 p `  x
)  =  0 )
3130adantl 453 . . . 4  |-  ( ( F : RR --> RR  /\  x  e.  CC )  ->  ( 0 p `  x )  =  0 )
32 eqidd 2390 . . . 4  |-  ( ( F : RR --> RR  /\  x  e.  RR )  ->  ( F `  x
)  =  ( F `
 x ) )
3322, 12, 24, 26, 29, 31, 32ofrfval 6254 . . 3  |-  ( F : RR --> RR  ->  ( 0 p  o R  <_  F  <->  A. x  e.  RR  0  <_  ( F `  x )
) )
3411, 15, 333bitr4d 277 . 2  |-  ( F : RR --> RR  ->  ( F : RR --> ( 0 [,)  +oo )  <->  0 p  o R  <_  F ) )
356, 34biadan2 624 1  |-  ( F : RR --> ( 0 [,)  +oo )  <->  ( F : RR --> RR  /\  0 p  o R  <_  F
) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2651   _Vcvv 2901    i^i cin 3264    C_ wss 3265   {csn 3759   class class class wbr 4155    X. cxp 4818    Fn wfn 5391   -->wf 5392   ` cfv 5396  (class class class)co 6022    o Rcofr 6245   CCcc 8923   RRcr 8924   0cc0 8925    +oocpnf 9052   RR*cxr 9054    <_ cle 9056   [,)cico 10852   0 pc0p 19430
This theorem is referenced by:  itg2i1fseq  19516  itg2addlem  19519
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-i2m1 8993  ax-1ne0 8994  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-po 4446  df-so 4447  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-ofr 6247  df-er 6843  df-en 7048  df-dom 7049  df-sdom 7050  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-ico 10856  df-0p 19431
  Copyright terms: Public domain W3C validator