Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0psubN Unicode version

Theorem 0psubN 29089
Description: The empty set is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
0psub.s  |-  S  =  ( PSubSp `  K )
Assertion
Ref Expression
0psubN  |-  ( K  e.  V  ->  (/)  e.  S
)

Proof of Theorem 0psubN
StepHypRef Expression
1 0ss 3444 . . 3  |-  (/)  C_  ( Atoms `  K )
2 ral0 3519 . . 3  |-  A. p  e.  (/)  A. q  e.  (/)  A. r  e.  (
Atoms `  K ) ( r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  (/) )
31, 2pm3.2i 443 . 2  |-  ( (/)  C_  ( Atoms `  K )  /\  A. p  e.  (/)  A. q  e.  (/)  A. r  e.  ( Atoms `  K )
( r ( le
`  K ) ( p ( join `  K
) q )  -> 
r  e.  (/) ) )
4 eqid 2256 . . 3  |-  ( le
`  K )  =  ( le `  K
)
5 eqid 2256 . . 3  |-  ( join `  K )  =  (
join `  K )
6 eqid 2256 . . 3  |-  ( Atoms `  K )  =  (
Atoms `  K )
7 0psub.s . . 3  |-  S  =  ( PSubSp `  K )
84, 5, 6, 7ispsubsp 29085 . 2  |-  ( K  e.  V  ->  ( (/) 
e.  S  <->  ( (/)  C_  ( Atoms `  K )  /\  A. p  e.  (/)  A. q  e.  (/)  A. r  e.  ( Atoms `  K )
( r ( le
`  K ) ( p ( join `  K
) q )  -> 
r  e.  (/) ) ) ) )
93, 8mpbiri 226 1  |-  ( K  e.  V  ->  (/)  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2516    C_ wss 3113   (/)c0 3416   class class class wbr 3983   ` cfv 4659  (class class class)co 5778   lecple 13163   joincjn 14026   Atomscatm 28604   PSubSpcpsubsp 28836
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-rab 2525  df-v 2759  df-sbc 2953  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-op 3609  df-uni 3788  df-br 3984  df-opab 4038  df-mpt 4039  df-id 4267  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fv 4675  df-ov 5781  df-psubsp 28843
  Copyright terms: Public domain W3C validator