Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0rrv Unicode version

Theorem 0rrv 23669
Description: The constant function equal to zero is a random variable. (Contributed by Thierry Arnoux, 16-Jan-2017.) (Revised by Thierry Arnoux, 30-Jan-2017.)
Hypothesis
Ref Expression
0rrv.1  |-  ( ph  ->  P  e. Prob )
Assertion
Ref Expression
0rrv  |-  ( ph  ->  ( x  e.  U. dom  P  |->  0 )  e.  (rRndVar `  P )
)
Distinct variable group:    x, P
Allowed substitution hint:    ph( x)

Proof of Theorem 0rrv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 0re 8854 . . . . 5  |-  0  e.  RR
21rgenw 2623 . . . 4  |-  A. x  e.  U. dom  P 0  e.  RR
3 eqid 2296 . . . . 5  |-  ( x  e.  U. dom  P  |->  0 )  =  ( x  e.  U. dom  P 
|->  0 )
43fmpt 5697 . . . 4  |-  ( A. x  e.  U. dom  P
0  e.  RR  <->  ( x  e.  U. dom  P  |->  0 ) : U. dom  P --> RR )
52, 4mpbi 199 . . 3  |-  ( x  e.  U. dom  P  |->  0 ) : U. dom  P --> RR
65a1i 10 . 2  |-  ( ph  ->  ( x  e.  U. dom  P  |->  0 ) : U. dom  P --> RR )
7 fconstmpt 4748 . . . . . . . . . . 11  |-  ( U. dom  P  X.  { 0 } )  =  ( x  e.  U. dom  P 
|->  0 )
87cnveqi 4872 . . . . . . . . . 10  |-  `' ( U. dom  P  X.  { 0 } )  =  `' ( x  e.  U. dom  P  |->  0 )
9 cnvxp 5113 . . . . . . . . . 10  |-  `' ( U. dom  P  X.  { 0 } )  =  ( { 0 }  X.  U. dom  P )
108, 9eqtr3i 2318 . . . . . . . . 9  |-  `' ( x  e.  U. dom  P 
|->  0 )  =  ( { 0 }  X.  U.
dom  P )
1110imaeq1i 5025 . . . . . . . 8  |-  ( `' ( x  e.  U. dom  P  |->  0 ) "
y )  =  ( ( { 0 }  X.  U. dom  P
) " y )
12 df-ima 4718 . . . . . . . 8  |-  ( ( { 0 }  X.  U.
dom  P ) "
y )  =  ran  ( ( { 0 }  X.  U. dom  P )  |`  y )
13 df-rn 4716 . . . . . . . 8  |-  ran  (
( { 0 }  X.  U. dom  P
)  |`  y )  =  dom  `' ( ( { 0 }  X.  U.
dom  P )  |`  y )
1411, 12, 133eqtri 2320 . . . . . . 7  |-  ( `' ( x  e.  U. dom  P  |->  0 ) "
y )  =  dom  `' ( ( { 0 }  X.  U. dom  P )  |`  y )
15 df-res 4717 . . . . . . . . . 10  |-  ( ( { 0 }  X.  U.
dom  P )  |`  y )  =  ( ( { 0 }  X.  U. dom  P
)  i^i  ( y  X.  _V ) )
16 inxp 4834 . . . . . . . . . 10  |-  ( ( { 0 }  X.  U.
dom  P )  i^i  ( y  X.  _V ) )  =  ( ( { 0 }  i^i  y )  X.  ( U. dom  P  i^i  _V ) )
17 inv1 3494 . . . . . . . . . . 11  |-  ( U. dom  P  i^i  _V )  =  U. dom  P
1817xpeq2i 4726 . . . . . . . . . 10  |-  ( ( { 0 }  i^i  y )  X.  ( U. dom  P  i^i  _V ) )  =  ( ( { 0 }  i^i  y )  X. 
U. dom  P )
1915, 16, 183eqtri 2320 . . . . . . . . 9  |-  ( ( { 0 }  X.  U.
dom  P )  |`  y )  =  ( ( { 0 }  i^i  y )  X. 
U. dom  P )
2019cnveqi 4872 . . . . . . . 8  |-  `' ( ( { 0 }  X.  U. dom  P
)  |`  y )  =  `' ( ( { 0 }  i^i  y
)  X.  U. dom  P )
2120dmeqi 4896 . . . . . . 7  |-  dom  `' ( ( { 0 }  X.  U. dom  P )  |`  y )  =  dom  `' ( ( { 0 }  i^i  y )  X.  U. dom  P )
22 cnvxp 5113 . . . . . . . 8  |-  `' ( ( { 0 }  i^i  y )  X. 
U. dom  P )  =  ( U. dom  P  X.  ( { 0 }  i^i  y ) )
2322dmeqi 4896 . . . . . . 7  |-  dom  `' ( ( { 0 }  i^i  y )  X.  U. dom  P
)  =  dom  ( U. dom  P  X.  ( { 0 }  i^i  y ) )
2414, 21, 233eqtri 2320 . . . . . 6  |-  ( `' ( x  e.  U. dom  P  |->  0 ) "
y )  =  dom  ( U. dom  P  X.  ( { 0 }  i^i  y ) )
25 xpeq2 4720 . . . . . . . . . . 11  |-  ( ( { 0 }  i^i  y )  =  (/)  ->  ( U. dom  P  X.  ( { 0 }  i^i  y ) )  =  ( U. dom  P  X.  (/) ) )
26 xp0 5114 . . . . . . . . . . 11  |-  ( U. dom  P  X.  (/) )  =  (/)
2725, 26syl6eq 2344 . . . . . . . . . 10  |-  ( ( { 0 }  i^i  y )  =  (/)  ->  ( U. dom  P  X.  ( { 0 }  i^i  y ) )  =  (/) )
2827dmeqd 4897 . . . . . . . . 9  |-  ( ( { 0 }  i^i  y )  =  (/)  ->  dom  ( U. dom  P  X.  ( { 0 }  i^i  y ) )  =  dom  (/) )
29 dm0 4908 . . . . . . . . 9  |-  dom  (/)  =  (/)
3028, 29syl6eq 2344 . . . . . . . 8  |-  ( ( { 0 }  i^i  y )  =  (/)  ->  dom  ( U. dom  P  X.  ( { 0 }  i^i  y ) )  =  (/) )
3130adantl 452 . . . . . . 7  |-  ( (
ph  /\  ( {
0 }  i^i  y
)  =  (/) )  ->  dom  ( U. dom  P  X.  ( { 0 }  i^i  y ) )  =  (/) )
32 0rrv.1 . . . . . . . . 9  |-  ( ph  ->  P  e. Prob )
33 domprobsiga 23629 . . . . . . . . 9  |-  ( P  e. Prob  ->  dom  P  e.  U.
ran sigAlgebra )
34 0elsiga 23490 . . . . . . . . 9  |-  ( dom 
P  e.  U. ran sigAlgebra  ->  (/)  e.  dom  P )
3532, 33, 343syl 18 . . . . . . . 8  |-  ( ph  -> 
(/)  e.  dom  P )
3635adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( {
0 }  i^i  y
)  =  (/) )  ->  (/) 
e.  dom  P )
3731, 36eqeltrd 2370 . . . . . 6  |-  ( (
ph  /\  ( {
0 }  i^i  y
)  =  (/) )  ->  dom  ( U. dom  P  X.  ( { 0 }  i^i  y ) )  e.  dom  P )
3824, 37syl5eqel 2380 . . . . 5  |-  ( (
ph  /\  ( {
0 }  i^i  y
)  =  (/) )  -> 
( `' ( x  e.  U. dom  P  |->  0 ) " y
)  e.  dom  P
)
39 dmxp 4913 . . . . . . . 8  |-  ( ( { 0 }  i^i  y )  =/=  (/)  ->  dom  ( U. dom  P  X.  ( { 0 }  i^i  y ) )  = 
U. dom  P )
4039adantl 452 . . . . . . 7  |-  ( (
ph  /\  ( {
0 }  i^i  y
)  =/=  (/) )  ->  dom  ( U. dom  P  X.  ( { 0 }  i^i  y ) )  =  U. dom  P
)
4132unveldomd 23633 . . . . . . . 8  |-  ( ph  ->  U. dom  P  e. 
dom  P )
4241adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( {
0 }  i^i  y
)  =/=  (/) )  ->  U. dom  P  e.  dom  P )
4340, 42eqeltrd 2370 . . . . . 6  |-  ( (
ph  /\  ( {
0 }  i^i  y
)  =/=  (/) )  ->  dom  ( U. dom  P  X.  ( { 0 }  i^i  y ) )  e.  dom  P )
4424, 43syl5eqel 2380 . . . . 5  |-  ( (
ph  /\  ( {
0 }  i^i  y
)  =/=  (/) )  -> 
( `' ( x  e.  U. dom  P  |->  0 ) " y
)  e.  dom  P
)
4538, 44pm2.61dane 2537 . . . 4  |-  ( ph  ->  ( `' ( x  e.  U. dom  P  |->  0 ) " y
)  e.  dom  P
)
4645adantr 451 . . 3  |-  ( (
ph  /\  y  e. 𝔅 )  -> 
( `' ( x  e.  U. dom  P  |->  0 ) " y
)  e.  dom  P
)
4746ralrimiva 2639 . 2  |-  ( ph  ->  A. y  e. 𝔅  ( `' ( x  e.  U. dom  P  |->  0 ) " y
)  e.  dom  P
)
4832isrrvv 23661 . 2  |-  ( ph  ->  ( ( x  e. 
U. dom  P  |->  0 )  e.  (rRndVar `  P
)  <->  ( ( x  e.  U. dom  P  |->  0 ) : U. dom  P --> RR  /\  A. y  e. 𝔅  ( `' ( x  e.  U. dom  P  |->  0 ) " y
)  e.  dom  P
) ) )
496, 47, 48mpbir2and 888 1  |-  ( ph  ->  ( x  e.  U. dom  P  |->  0 )  e.  (rRndVar `  P )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   _Vcvv 2801    i^i cin 3164   (/)c0 3468   {csn 3653   U.cuni 3843    e. cmpt 4093    X. cxp 4703   `'ccnv 4704   dom cdm 4705   ran crn 4706    |` cres 4707   "cima 4708   -->wf 5267   ` cfv 5271   RRcr 8752   0cc0 8753  sigAlgebracsiga 23483  𝔅cbrsiga 23527  Probcprb 23625  rRndVarcrrv 23658
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-i2m1 8821  ax-1ne0 8822  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-ioo 10676  df-topgen 13360  df-top 16652  df-bases 16654  df-esum 23426  df-siga 23484  df-sigagen 23515  df-brsiga 23528  df-meas 23542  df-mbfm 23571  df-prob 23626  df-rrv 23659
  Copyright terms: Public domain W3C validator