MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0top Unicode version

Theorem 0top 16973
Description: The singleton of the empty set is the only topology possible for an empty underlying set. (Contributed by NM, 9-Sep-2006.)
Assertion
Ref Expression
0top  |-  ( J  e.  Top  ->  ( U. J  =  (/)  <->  J  =  { (/) } ) )

Proof of Theorem 0top
StepHypRef Expression
1 olc 374 . . 3  |-  ( J  =  { (/) }  ->  ( J  =  (/)  \/  J  =  { (/) } ) )
2 0opn 16902 . . . . . 6  |-  ( J  e.  Top  ->  (/)  e.  J
)
3 n0i 3578 . . . . . 6  |-  ( (/)  e.  J  ->  -.  J  =  (/) )
42, 3syl 16 . . . . 5  |-  ( J  e.  Top  ->  -.  J  =  (/) )
54pm2.21d 100 . . . 4  |-  ( J  e.  Top  ->  ( J  =  (/)  ->  J  =  { (/) } ) )
6 idd 22 . . . 4  |-  ( J  e.  Top  ->  ( J  =  { (/) }  ->  J  =  { (/) } ) )
75, 6jaod 370 . . 3  |-  ( J  e.  Top  ->  (
( J  =  (/)  \/  J  =  { (/) } )  ->  J  =  { (/) } ) )
81, 7impbid2 196 . 2  |-  ( J  e.  Top  ->  ( J  =  { (/) }  <->  ( J  =  (/)  \/  J  =  { (/) } ) ) )
9 uni0b 3984 . . 3  |-  ( U. J  =  (/)  <->  J  C_  { (/) } )
10 sssn 3902 . . 3  |-  ( J 
C_  { (/) }  <->  ( J  =  (/)  \/  J  =  { (/) } ) )
119, 10bitr2i 242 . 2  |-  ( ( J  =  (/)  \/  J  =  { (/) } )  <->  U. J  =  (/) )
128, 11syl6rbb 254 1  |-  ( J  e.  Top  ->  ( U. J  =  (/)  <->  J  =  { (/) } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    = wceq 1649    e. wcel 1717    C_ wss 3265   (/)c0 3573   {csn 3759   U.cuni 3959   Topctop 16883
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-v 2903  df-dif 3268  df-in 3272  df-ss 3279  df-nul 3574  df-pw 3746  df-sn 3765  df-uni 3960  df-top 16888
  Copyright terms: Public domain W3C validator