MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0wlk Unicode version

Theorem 0wlk 21410
Description: A pair of an empty set (of edges) and a second set (of vertices) is a walk if and only if the second set contains exactly one vertex (in an undirected graph). (Contributed by Alexander van der Vekens, 30-Oct-2017.)
Assertion
Ref Expression
0wlk  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  P  e.  Z )  ->  ( (/) ( V Walks  E ) P  <->  P : ( 0 ... 0 ) --> V ) )

Proof of Theorem 0wlk
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 0ex 4281 . . 3  |-  (/)  e.  _V
2 iswlk 21392 . . 3  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( (/)  e.  _V  /\  P  e.  Z ) )  ->  ( (/) ( V Walks 
E ) P  <->  ( (/)  e. Word  dom  E  /\  P : ( 0 ... ( # `  (/) ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  (/) ) ) ( E `  ( (/) `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
31, 2mpanr1 665 . 2  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  P  e.  Z )  ->  ( (/) ( V Walks  E ) P  <->  ( (/)  e. Word  dom  E  /\  P : ( 0 ... ( # `  (/) ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  (/) ) ) ( E `  ( (/) `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
4 ral0 3676 . . . . 5  |-  A. k  e.  (/)  ( E `  ( (/) `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }
5 hash0 11574 . . . . . . . 8  |-  ( # `  (/) )  =  0
65oveq2i 6032 . . . . . . 7  |-  ( 0..^ ( # `  (/) ) )  =  ( 0..^ 0 )
7 fzo0 11090 . . . . . . 7  |-  ( 0..^ 0 )  =  (/)
86, 7eqtri 2408 . . . . . 6  |-  ( 0..^ ( # `  (/) ) )  =  (/)
98raleqi 2852 . . . . 5  |-  ( A. k  e.  ( 0..^ ( # `  (/) ) ) ( E `  ( (/) `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  <->  A. k  e.  (/)  ( E `  ( (/) `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
104, 9mpbir 201 . . . 4  |-  A. k  e.  ( 0..^ ( # `  (/) ) ) ( E `  ( (/) `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }
1110biantru 492 . . 3  |-  ( (
(/)  e. Word  dom  E  /\  P : ( 0 ... ( # `  (/) ) ) --> V )  <->  ( ( (/) 
e. Word  dom  E  /\  P : ( 0 ... ( # `  (/) ) ) --> V )  /\  A. k  e.  ( 0..^ ( # `  (/) ) ) ( E `  ( (/) `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
125eqcomi 2392 . . . . . 6  |-  0  =  ( # `  (/) )
1312oveq2i 6032 . . . . 5  |-  ( 0 ... 0 )  =  ( 0 ... ( # `
 (/) ) )
1413feq2i 5527 . . . 4  |-  ( P : ( 0 ... 0 ) --> V  <->  P :
( 0 ... ( # `
 (/) ) ) --> V )
15 wrd0 11660 . . . . 5  |-  (/)  e. Word  dom  E
1615biantrur 493 . . . 4  |-  ( P : ( 0 ... ( # `  (/) ) ) --> V  <->  ( (/)  e. Word  dom  E  /\  P : ( 0 ... ( # `  (/) ) ) --> V ) )
1714, 16bitri 241 . . 3  |-  ( P : ( 0 ... 0 ) --> V  <->  ( (/)  e. Word  dom  E  /\  P : ( 0 ... ( # `  (/) ) ) --> V ) )
18 df-3an 938 . . 3  |-  ( (
(/)  e. Word  dom  E  /\  P : ( 0 ... ( # `  (/) ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  (/) ) ) ( E `  ( (/) `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  <->  ( ( (/) 
e. Word  dom  E  /\  P : ( 0 ... ( # `  (/) ) ) --> V )  /\  A. k  e.  ( 0..^ ( # `  (/) ) ) ( E `  ( (/) `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
1911, 17, 183bitr4ri 270 . 2  |-  ( (
(/)  e. Word  dom  E  /\  P : ( 0 ... ( # `  (/) ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  (/) ) ) ( E `  ( (/) `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  <->  P :
( 0 ... 0
) --> V )
203, 19syl6bb 253 1  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  P  e.  Z )  ->  ( (/) ( V Walks  E ) P  <->  P : ( 0 ... 0 ) --> V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2650   _Vcvv 2900   (/)c0 3572   {cpr 3759   class class class wbr 4154   dom cdm 4819   -->wf 5391   ` cfv 5395  (class class class)co 6021   0cc0 8924   1c1 8925    + caddc 8927   ...cfz 10976  ..^cfzo 11066   #chash 11546  Word cword 11645   Walks cwalk 21373
This theorem is referenced by:  0wlkon  21412
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-oadd 6665  df-er 6842  df-map 6957  df-pm 6958  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-card 7760  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-nn 9934  df-n0 10155  df-z 10216  df-uz 10422  df-fz 10977  df-fzo 11067  df-hash 11547  df-word 11651  df-wlk 21382
  Copyright terms: Public domain W3C validator