MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.17 Structured version   Unicode version

Theorem 19.17 1885
Description: Theorem 19.17 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.17.1  |-  F/ x ps
Assertion
Ref Expression
19.17  |-  ( A. x ( ph  <->  ps )  ->  ( A. x ph  <->  ps ) )

Proof of Theorem 19.17
StepHypRef Expression
1 albi 1574 . 2  |-  ( A. x ( ph  <->  ps )  ->  ( A. x ph  <->  A. x ps ) )
2 19.17.1 . . 3  |-  F/ x ps
3219.3 1792 . 2  |-  ( A. x ps  <->  ps )
41, 3syl6bb 254 1  |-  ( A. x ( ph  <->  ps )  ->  ( A. x ph  <->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178   A.wal 1550   F/wnf 1554
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-11 1762
This theorem depends on definitions:  df-bi 179  df-ex 1552  df-nf 1555
  Copyright terms: Public domain W3C validator