Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  19.21a3con13vVD Unicode version

Theorem 19.21a3con13vVD 28944
Description: Virtual deduction proof of alrim3con13v 28595. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: 2:: 3:2,?: e2 28708 4:2,?: e2 28708 5:2,?: e2 28708 6:1,4,?: e12 28813 7:3,?: e2 28708 8:5,?: e2 28708 9:7,6,8,?: e222 28713 10:9,?: e2 28708 11:10:in2 qed:11:in1
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
19.21a3con13vVD
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem 19.21a3con13vVD
StepHypRef Expression
1 idn2 28690 . . . . . . 7
2 simp1 955 . . . . . . 7
31, 2e2 28708 . . . . . 6
4 ax-17 1606 . . . . . 6
53, 4e2 28708 . . . . 5
6 idn1 28641 . . . . . 6
7 simp2 956 . . . . . . 7
81, 7e2 28708 . . . . . 6
9 id 19 . . . . . 6
106, 8, 9e12 28813 . . . . 5
11 simp3 957 . . . . . . 7
121, 11e2 28708 . . . . . 6
13 ax-17 1606 . . . . . 6
1412, 13e2 28708 . . . . 5
15 pm3.2an3 1131 . . . . 5
165, 10, 14, 15e222 28713 . . . 4
17 19.26-3an 1585 . . . . 5
1817biimpri 197 . . . 4
1916, 18e2 28708 . . 3
2019in2 28682 . 2
2120in1 28638 1
 Colors of variables: wff set class Syntax hints:   wi 4   w3a 934  wal 1530 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606 This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936  df-vd1 28637  df-vd2 28646
 Copyright terms: Public domain W3C validator