MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.23 Structured version   Unicode version

Theorem 19.23 1819
Description: Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
Hypothesis
Ref Expression
19.23.1  |-  F/ x ps
Assertion
Ref Expression
19.23  |-  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) )

Proof of Theorem 19.23
StepHypRef Expression
1 19.23.1 . 2  |-  F/ x ps
2 19.23t 1818 . 2  |-  ( F/ x ps  ->  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) ) )
31, 2ax-mp 8 1  |-  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177   A.wal 1549   E.wex 1550   F/wnf 1553
This theorem is referenced by:  19.23h  1820  exlimi  1821  exlimdOLD  1825  nf2  1889  19.23v  1914  pm11.53  1916  equsal  1999  ax10-16  2267  r19.3rz  3719  ralidm  3731  ax10ext  27583  pm11.53OLD7  29700
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-11 1761
This theorem depends on definitions:  df-bi 178  df-ex 1551  df-nf 1554
  Copyright terms: Public domain W3C validator