MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.23bi Unicode version

Theorem 19.23bi 1767
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.23bi.1  |-  ( E. x ph  ->  ps )
Assertion
Ref Expression
19.23bi  |-  ( ph  ->  ps )

Proof of Theorem 19.23bi
StepHypRef Expression
1 19.8a 1754 . 2  |-  ( ph  ->  E. x ph )
2 19.23bi.1 . 2  |-  ( E. x ph  ->  ps )
31, 2syl 16 1  |-  ( ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1547
This theorem is referenced by:  equs5e  1899  2mo  2316  copsexg  4383  axreg2  7494  ustuqtop4  18195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-11 1753
This theorem depends on definitions:  df-bi 178  df-ex 1548
  Copyright terms: Public domain W3C validator