Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.23t Structured version   Unicode version

Theorem 19.23t 1818
 Description: Closed form of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 7-Nov-2005.) (Proof shortened by Wolf Lammen, 2-Jan-2018.)
Assertion
Ref Expression
19.23t

Proof of Theorem 19.23t
StepHypRef Expression
1 exim 1584 . . 3
2 19.9t 1793 . . . 4
32biimpd 199 . . 3
41, 3syl9r 69 . 2
5 nfr 1777 . . . 4
65imim2d 50 . . 3
7 19.38 1812 . . 3
86, 7syl6 31 . 2
94, 8impbid 184 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177  wal 1549  wex 1550  wnf 1553 This theorem is referenced by:  19.23  1819  sbftOLD  2116  axie2  2412  r19.23t  2820  ceqsalt  2978  vtoclgft  3002  sbciegft  3191  sbftNEW7  29556 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-11 1761 This theorem depends on definitions:  df-bi 178  df-ex 1551  df-nf 1554
 Copyright terms: Public domain W3C validator