Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.23tOLD Structured version   Unicode version

Theorem 19.23tOLD 1841
 Description: Obsolete proof of 19.23t 1821 as of 1-Jan-2018. (Contributed by NM, 7-Nov-2005.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
19.23tOLD

Proof of Theorem 19.23tOLD
StepHypRef Expression
1 exim 1585 . . 3
2 19.9t 1796 . . . 4
32imbi2d 309 . . 3
41, 3syl5ib 212 . 2
5 nfnf1 1811 . . 3
6 nfe1 1750 . . . . 5
76a1i 11 . . . 4
8 id 21 . . . 4
97, 8nfimd 1830 . . 3
10 19.8a 1765 . . . . 5
1110a1i 11 . . . 4
1211imim1d 72 . . 3
135, 9, 12alrimdd 1787 . 2
144, 13impbid 185 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178  wal 1550  wex 1551  wnf 1554 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-6 1747  ax-11 1764 This theorem depends on definitions:  df-bi 179  df-ex 1552  df-nf 1555
 Copyright terms: Public domain W3C validator