MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.23v Unicode version

Theorem 19.23v 1832
Description: Special case of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
19.23v  |-  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) )
Distinct variable group:    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem 19.23v
StepHypRef Expression
1 nfv 1605 . 2  |-  F/ x ps
2119.23 1797 1  |-  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   A.wal 1527   E.wex 1528
This theorem is referenced by:  19.23vv  1833  2eu4  2226  euind  2952  reuind  2968  r19.3rzv  3547  unissb  3857  disjor  4007  dftr2  4115  ssrelrel  4785  cotr  5053  dffun2  5230  fununi  5281  dff13  5744  dffi2  7171  aceq2  7741  metcld  18726  metcld2  18727  isch2  21798  dfon2lem8  23549  psgnunilem4  26831  pm10.52  26971  truniALT  27608  tpid3gVD  27921  truniALTVD  27957  onfrALTVD  27970  unisnALT  28005  bnj1052  28308  bnj1030  28320
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-11 1715
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529  df-nf 1532
  Copyright terms: Public domain W3C validator