MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.27v Unicode version

Theorem 19.27v 1837
Description: Theorem 19.27 of [Margaris] p. 90. (Contributed by NM, 3-Jun-2004.)
Assertion
Ref Expression
19.27v  |-  ( A. x ( ph  /\  ps )  <->  ( A. x ph  /\  ps ) )
Distinct variable group:    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem 19.27v
StepHypRef Expression
1 nfv 1607 . 2  |-  F/ x ps
2119.27 1807 1  |-  ( A. x ( ph  /\  ps )  <->  ( A. x ph  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358   A.wal 1529
This theorem is referenced by:  rexrsb  27958
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-11 1717
This theorem depends on definitions:  df-bi 177  df-an 360  df-nf 1534
  Copyright terms: Public domain W3C validator