MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.27v Unicode version

Theorem 19.27v 2027
Description: Theorem 19.27 of [Margaris] p. 90. (Contributed by NM, 3-Jun-2004.)
Assertion
Ref Expression
19.27v  |-  ( A. x ( ph  /\  ps )  <->  ( A. x ph  /\  ps ) )
Distinct variable group:    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem 19.27v
StepHypRef Expression
1 nfv 1629 . 2  |-  F/ x ps
2119.27 1786 1  |-  ( A. x ( ph  /\  ps )  <->  ( A. x ph  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360   A.wal 1532
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-gen 1536  ax-17 1628  ax-4 1692
This theorem depends on definitions:  df-bi 179  df-an 362  df-nf 1540
  Copyright terms: Public domain W3C validator