MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.28v Unicode version

Theorem 19.28v 1837
Description: Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
19.28v  |-  ( A. x ( ph  /\  ps )  <->  ( ph  /\  A. x ps ) )
Distinct variable group:    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem 19.28v
StepHypRef Expression
1 nfv 1606 . 2  |-  F/ x ph
2119.28 1807 1  |-  ( A. x ( ph  /\  ps )  <->  ( ph  /\  A. x ps ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360   A.wal 1528
This theorem is referenced by:  cbval2  1949  reu6  2955  tfrlem2  6387  dfer2  6656  kmlem14  7784  kmlem15  7785  19.28vv  26983  bnj1176  28302  bnj1186  28304
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-11 1716
This theorem depends on definitions:  df-bi 179  df-an 362  df-nf 1533
  Copyright terms: Public domain W3C validator