MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.28v Unicode version

Theorem 19.28v 1848
Description: Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
19.28v  |-  ( A. x ( ph  /\  ps )  <->  ( ph  /\  A. x ps ) )
Distinct variable group:    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem 19.28v
StepHypRef Expression
1 nfv 1609 . 2  |-  F/ x ph
2119.28 1818 1  |-  ( A. x ( ph  /\  ps )  <->  ( ph  /\  A. x ps ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358   A.wal 1530
This theorem is referenced by:  cbval2  1957  reu6  2967  tfrlem2  6408  dfer2  6677  kmlem14  7805  kmlem15  7806  19.28vv  27687  bnj1176  29351  bnj1186  29353  cbval2OLD7  29684
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-11 1727
This theorem depends on definitions:  df-bi 177  df-an 360  df-nf 1535
  Copyright terms: Public domain W3C validator