MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.31 Structured version   Unicode version

Theorem 19.31 1898
Description: Theorem 19.31 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.31.1  |-  F/ x ps
Assertion
Ref Expression
19.31  |-  ( A. x ( ph  \/  ps )  <->  ( A. x ph  \/  ps ) )

Proof of Theorem 19.31
StepHypRef Expression
1 19.31.1 . . 3  |-  F/ x ps
2119.32 1897 . 2  |-  ( A. x ( ps  \/  ph )  <->  ( ps  \/  A. x ph ) )
3 orcom 378 . . 3  |-  ( (
ph  \/  ps )  <->  ( ps  \/  ph )
)
43albii 1576 . 2  |-  ( A. x ( ph  \/  ps )  <->  A. x ( ps  \/  ph ) )
5 orcom 378 . 2  |-  ( ( A. x ph  \/  ps )  <->  ( ps  \/  A. x ph ) )
62, 4, 53bitr4i 270 1  |-  ( A. x ( ph  \/  ps )  <->  ( A. x ph  \/  ps ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    \/ wo 359   A.wal 1550   F/wnf 1554
This theorem is referenced by:  2eu3  2365  19.31vv  27573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-11 1762
This theorem depends on definitions:  df-bi 179  df-or 361  df-tru 1329  df-ex 1552  df-nf 1555
  Copyright terms: Public domain W3C validator