MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.33 Unicode version

Theorem 19.33 1606
Description: Theorem 19.33 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
19.33  |-  ( ( A. x ph  \/  A. x ps )  ->  A. x ( ph  \/  ps ) )

Proof of Theorem 19.33
StepHypRef Expression
1 orc 376 . . 3  |-  ( ph  ->  ( ph  \/  ps ) )
21alimi 1546 . 2  |-  ( A. x ph  ->  A. x
( ph  \/  ps ) )
3 olc 375 . . 3  |-  ( ps 
->  ( ph  \/  ps ) )
43alimi 1546 . 2  |-  ( A. x ps  ->  A. x
( ph  \/  ps ) )
52, 4jaoi 370 1  |-  ( ( A. x ph  \/  A. x ps )  ->  A. x ( ph  \/  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    \/ wo 359   A.wal 1532
This theorem is referenced by:  19.33b  1607
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-gen 1536
This theorem depends on definitions:  df-bi 179  df-or 361
  Copyright terms: Public domain W3C validator