MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.33b Unicode version

Theorem 19.33b 1596
Description: The antecedent provides a condition implying the converse of 19.33 1595. Compare Theorem 19.33 of [Margaris] p. 90. (Contributed by NM, 27-Mar-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 5-Jul-2014.)
Assertion
Ref Expression
19.33b  |-  ( -.  ( E. x ph  /\ 
E. x ps )  ->  ( A. x (
ph  \/  ps )  <->  ( A. x ph  \/  A. x ps ) ) )

Proof of Theorem 19.33b
StepHypRef Expression
1 ianor 476 . . 3  |-  ( -.  ( E. x ph  /\ 
E. x ps )  <->  ( -.  E. x ph  \/  -.  E. x ps ) )
2 alnex 1531 . . . . . 6  |-  ( A. x  -.  ph  <->  -.  E. x ph )
3 pm2.53 364 . . . . . . 7  |-  ( (
ph  \/  ps )  ->  ( -.  ph  ->  ps ) )
43al2imi 1549 . . . . . 6  |-  ( A. x ( ph  \/  ps )  ->  ( A. x  -.  ph  ->  A. x ps ) )
52, 4syl5bir 211 . . . . 5  |-  ( A. x ( ph  \/  ps )  ->  ( -. 
E. x ph  ->  A. x ps ) )
6 olc 375 . . . . 5  |-  ( A. x ps  ->  ( A. x ph  \/  A. x ps ) )
75, 6syl6com 33 . . . 4  |-  ( -. 
E. x ph  ->  ( A. x ( ph  \/  ps )  ->  ( A. x ph  \/  A. x ps ) ) )
8 19.30 1592 . . . . . . 7  |-  ( A. x ( ph  \/  ps )  ->  ( A. x ph  \/  E. x ps ) )
98orcomd 379 . . . . . 6  |-  ( A. x ( ph  \/  ps )  ->  ( E. x ps  \/  A. x ph ) )
109ord 368 . . . . 5  |-  ( A. x ( ph  \/  ps )  ->  ( -. 
E. x ps  ->  A. x ph ) )
11 orc 376 . . . . 5  |-  ( A. x ph  ->  ( A. x ph  \/  A. x ps ) )
1210, 11syl6com 33 . . . 4  |-  ( -. 
E. x ps  ->  ( A. x ( ph  \/  ps )  ->  ( A. x ph  \/  A. x ps ) ) )
137, 12jaoi 370 . . 3  |-  ( ( -.  E. x ph  \/  -.  E. x ps )  ->  ( A. x ( ph  \/  ps )  ->  ( A. x ph  \/  A. x ps ) ) )
141, 13sylbi 189 . 2  |-  ( -.  ( E. x ph  /\ 
E. x ps )  ->  ( A. x (
ph  \/  ps )  ->  ( A. x ph  \/  A. x ps )
) )
15 19.33 1595 . 2  |-  ( ( A. x ph  \/  A. x ps )  ->  A. x ( ph  \/  ps ) )
1614, 15impbid1 196 1  |-  ( -.  ( E. x ph  /\ 
E. x ps )  ->  ( A. x (
ph  \/  ps )  <->  ( A. x ph  \/  A. x ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360   A.wal 1528   E.wex 1529
This theorem is referenced by:  kmlem16  7786
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-ex 1530
  Copyright terms: Public domain W3C validator