MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.35 Unicode version

Theorem 19.35 1599
Description: Theorem 19.35 of [Margaris] p. 90. This theorem is useful for moving an implication (in the form of the right-hand side) into the scope of a single existential quantifier. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 27-Jun-2014.)
Assertion
Ref Expression
19.35  |-  ( E. x ( ph  ->  ps )  <->  ( A. x ph  ->  E. x ps )
)

Proof of Theorem 19.35
StepHypRef Expression
1 19.26 1592 . . . 4  |-  ( A. x ( ph  /\  -.  ps )  <->  ( A. x ph  /\  A. x  -.  ps ) )
2 annim 416 . . . . 5  |-  ( (
ph  /\  -.  ps )  <->  -.  ( ph  ->  ps ) )
32albii 1554 . . . 4  |-  ( A. x ( ph  /\  -.  ps )  <->  A. x  -.  ( ph  ->  ps ) )
4 alnex 1569 . . . . 5  |-  ( A. x  -.  ps  <->  -.  E. x ps )
54anbi2i 678 . . . 4  |-  ( ( A. x ph  /\  A. x  -.  ps )  <->  ( A. x ph  /\  -.  E. x ps )
)
61, 3, 53bitr3i 268 . . 3  |-  ( A. x  -.  ( ph  ->  ps )  <->  ( A. x ph  /\  -.  E. x ps ) )
7 alnex 1569 . . 3  |-  ( A. x  -.  ( ph  ->  ps )  <->  -.  E. x
( ph  ->  ps )
)
8 annim 416 . . 3  |-  ( ( A. x ph  /\  -.  E. x ps )  <->  -.  ( A. x ph  ->  E. x ps )
)
96, 7, 83bitr3i 268 . 2  |-  ( -. 
E. x ( ph  ->  ps )  <->  -.  ( A. x ph  ->  E. x ps ) )
109con4bii 290 1  |-  ( E. x ( ph  ->  ps )  <->  ( A. x ph  ->  E. x ps )
)
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1532   E.wex 1537
This theorem is referenced by:  19.35i  1600  19.35ri  1601  19.25  1602  19.43  1604  19.36  1788  19.37  1790  19.39  1792  19.24  1793  sbequi  1952  grothprim  8410
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-gen 1536
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1538
  Copyright terms: Public domain W3C validator