MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.35i Unicode version

Theorem 19.35i 1588
Description: Inference from Theorem 19.35 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.35i.1  |-  E. x
( ph  ->  ps )
Assertion
Ref Expression
19.35i  |-  ( A. x ph  ->  E. x ps )

Proof of Theorem 19.35i
StepHypRef Expression
1 19.35i.1 . 2  |-  E. x
( ph  ->  ps )
2 19.35 1587 . 2  |-  ( E. x ( ph  ->  ps )  <->  ( A. x ph  ->  E. x ps )
)
31, 2mpbi 199 1  |-  ( A. x ph  ->  E. x ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1527   E.wex 1528
This theorem is referenced by:  axrep4  4135  zfcndrep  8236
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529
  Copyright terms: Public domain W3C validator