MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.35ri Unicode version

Theorem 19.35ri 1601
Description: Inference from Theorem 19.35 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.35ri.1  |-  ( A. x ph  ->  E. x ps )
Assertion
Ref Expression
19.35ri  |-  E. x
( ph  ->  ps )

Proof of Theorem 19.35ri
StepHypRef Expression
1 19.35ri.1 . 2  |-  ( A. x ph  ->  E. x ps )
2 19.35 1599 . 2  |-  ( E. x ( ph  ->  ps )  <->  ( A. x ph  ->  E. x ps )
)
31, 2mpbir 202 1  |-  E. x
( ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 6   A.wal 1532   E.wex 1537
This theorem is referenced by:  qexmid  1813  axrep1  4072  axextnd  8146  axinfnd  8161
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-gen 1536
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1538
  Copyright terms: Public domain W3C validator