MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.36 Unicode version

Theorem 19.36 1809
Description: Theorem 19.36 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.36.1  |-  F/ x ps
Assertion
Ref Expression
19.36  |-  ( E. x ( ph  ->  ps )  <->  ( A. x ph  ->  ps ) )

Proof of Theorem 19.36
StepHypRef Expression
1 19.35 1589 . 2  |-  ( E. x ( ph  ->  ps )  <->  ( A. x ph  ->  E. x ps )
)
2 19.36.1 . . . 4  |-  F/ x ps
3219.9 1785 . . 3  |-  ( E. x ps  <->  ps )
43imbi2i 303 . 2  |-  ( ( A. x ph  ->  E. x ps )  <->  ( A. x ph  ->  ps )
)
51, 4bitri 240 1  |-  ( E. x ( ph  ->  ps )  <->  ( A. x ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   A.wal 1529   E.wex 1530   F/wnf 1533
This theorem is referenced by:  19.36i  1810  19.36v  1839  19.12vv  1841  spcimgft  2861  19.12b  24160
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-6 1705  ax-11 1717
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1531  df-nf 1534
  Copyright terms: Public domain W3C validator