MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.36aiv Unicode version

Theorem 19.36aiv 1838
Description: Inference from Theorem 19.36 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.36aiv.1  |-  E. x
( ph  ->  ps )
Assertion
Ref Expression
19.36aiv  |-  ( A. x ph  ->  ps )
Distinct variable group:    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem 19.36aiv
StepHypRef Expression
1 nfv 1605 . 2  |-  F/ x ps
2 19.36aiv.1 . 2  |-  E. x
( ph  ->  ps )
31, 219.36i 1808 1  |-  ( A. x ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1527   E.wex 1528
This theorem is referenced by:  vtocl2  2839  vtocl3  2840  zfcndext  8235
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-11 1715
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529  df-nf 1532
  Copyright terms: Public domain W3C validator