MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.36aiv Unicode version

Theorem 19.36aiv 1840
Description: Inference from Theorem 19.36 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.36aiv.1  |-  E. x
( ph  ->  ps )
Assertion
Ref Expression
19.36aiv  |-  ( A. x ph  ->  ps )
Distinct variable group:    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem 19.36aiv
StepHypRef Expression
1 nfv 1606 . 2  |-  F/ x ps
2 19.36aiv.1 . 2  |-  E. x
( ph  ->  ps )
31, 219.36i 1810 1  |-  ( A. x ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 6   A.wal 1528   E.wex 1529
This theorem is referenced by:  vtocl2  2841  vtocl3  2842  zfcndext  8231
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-6 1704  ax-11 1716
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1530  df-nf 1533
  Copyright terms: Public domain W3C validator