MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.36i Structured version   Unicode version

Theorem 19.36i 1897
Description: Inference from Theorem 19.36 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
19.36.1  |-  F/ x ps
19.36i.2  |-  E. x
( ph  ->  ps )
Assertion
Ref Expression
19.36i  |-  ( A. x ph  ->  ps )

Proof of Theorem 19.36i
StepHypRef Expression
1 19.36i.2 . 2  |-  E. x
( ph  ->  ps )
2 19.36.1 . . 3  |-  F/ x ps
3219.36 1896 . 2  |-  ( E. x ( ph  ->  ps )  <->  ( A. x ph  ->  ps ) )
41, 3mpbi 201 1  |-  ( A. x ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1550   E.wex 1551   F/wnf 1554
This theorem is referenced by:  19.36aiv  1924  spim  1961  vtoclf  3014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-6 1747  ax-11 1764
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552  df-nf 1555
  Copyright terms: Public domain W3C validator