MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.36v Unicode version

Theorem 19.36v 1837
Description: Special case of Theorem 19.36 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
19.36v  |-  ( E. x ( ph  ->  ps )  <->  ( A. x ph  ->  ps ) )
Distinct variable group:    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem 19.36v
StepHypRef Expression
1 nfv 1605 . 2  |-  F/ x ps
2119.36 1807 1  |-  ( E. x ( ph  ->  ps )  <->  ( A. x ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   A.wal 1527   E.wex 1528
This theorem is referenced by:  19.12vv  1839  axext2  2265  vtocl2  2839  vtocl3  2840  19.36vv  27581  bnj1090  29009
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-11 1715
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529  df-nf 1532
  Copyright terms: Public domain W3C validator