MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.37 Structured version   Unicode version

Theorem 19.37 1898
Description: Theorem 19.37 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.37.1  |-  F/ x ph
Assertion
Ref Expression
19.37  |-  ( E. x ( ph  ->  ps )  <->  ( ph  ->  E. x ps ) )

Proof of Theorem 19.37
StepHypRef Expression
1 19.35 1612 . 2  |-  ( E. x ( ph  ->  ps )  <->  ( A. x ph  ->  E. x ps )
)
2 19.37.1 . . . 4  |-  F/ x ph
3219.3 1794 . . 3  |-  ( A. x ph  <->  ph )
43imbi1i 317 . 2  |-  ( ( A. x ph  ->  E. x ps )  <->  ( ph  ->  E. x ps )
)
51, 4bitri 242 1  |-  ( E. x ( ph  ->  ps )  <->  ( ph  ->  E. x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178   A.wal 1550   E.wex 1551   F/wnf 1554
This theorem is referenced by:  19.37v  1926  bnj900  29474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-11 1764
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552  df-nf 1555
  Copyright terms: Public domain W3C validator