MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.37 Unicode version

Theorem 19.37 1821
Description: Theorem 19.37 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.37.1  |-  F/ x ph
Assertion
Ref Expression
19.37  |-  ( E. x ( ph  ->  ps )  <->  ( ph  ->  E. x ps ) )

Proof of Theorem 19.37
StepHypRef Expression
1 19.35 1590 . 2  |-  ( E. x ( ph  ->  ps )  <->  ( A. x ph  ->  E. x ps )
)
2 19.37.1 . . . 4  |-  F/ x ph
3219.3 1793 . . 3  |-  ( A. x ph  <->  ph )
43imbi1i 315 . 2  |-  ( ( A. x ph  ->  E. x ps )  <->  ( ph  ->  E. x ps )
)
51, 4bitri 240 1  |-  ( E. x ( ph  ->  ps )  <->  ( ph  ->  E. x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   A.wal 1530   E.wex 1531   F/wnf 1534
This theorem is referenced by:  19.37v  1852  bnj900  29277
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-11 1727
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1532  df-nf 1535
  Copyright terms: Public domain W3C validator