MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.37v Unicode version

Theorem 19.37v 2033
Description: Special case of Theorem 19.37 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
19.37v  |-  ( E. x ( ph  ->  ps )  <->  ( ph  ->  E. x ps ) )
Distinct variable group:    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem 19.37v
StepHypRef Expression
1 nfv 1629 . 2  |-  F/ x ph
2119.37 1790 1  |-  ( E. x ( ph  ->  ps )  <->  ( ph  ->  E. x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178   E.wex 1537
This theorem is referenced by:  19.37aiv  2034  moanim  2172  axrep5  4096  kmlem14  7743  kmlem15  7744  19.37vv  26936  pm11.61  26945  relopabVD  27711  bnj132  27785  bnj1098  27848  bnj150  27941  bnj865  27988  bnj996  28020  bnj1021  28029  bnj1090  28042  bnj1176  28068
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-gen 1536  ax-17 1628  ax-4 1692
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1538  df-nf 1540
  Copyright terms: Public domain W3C validator