MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.37v Unicode version

Theorem 19.37v 1852
Description: Special case of Theorem 19.37 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
19.37v  |-  ( E. x ( ph  ->  ps )  <->  ( ph  ->  E. x ps ) )
Distinct variable group:    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem 19.37v
StepHypRef Expression
1 nfv 1609 . 2  |-  F/ x ph
2119.37 1821 1  |-  ( E. x ( ph  ->  ps )  <->  ( ph  ->  E. x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   E.wex 1531
This theorem is referenced by:  19.37aiv  1853  moanim  2212  axrep5  4152  kmlem14  7805  kmlem15  7806  eqvincg  23146  19.37vv  27686  pm11.61  27695  rmoanim  28060  relopabVD  28993  bnj132  29068  bnj1098  29131  bnj150  29224  bnj865  29271  bnj996  29303  bnj1021  29312  bnj1090  29325  bnj1176  29351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-11 1727
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1532  df-nf 1535
  Copyright terms: Public domain W3C validator