MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.3v Unicode version

Theorem 19.3v 1662
Description: Special case of Theorem 19.3 of [Margaris] p. 89. (Contributed by NM, 1-Aug-2017.)
Assertion
Ref Expression
19.3v  |-  ( A. x ph  <->  ph )
Distinct variable group:    ph, x

Proof of Theorem 19.3v
StepHypRef Expression
1 spvw 1661 . 2  |-  ( A. x ph  ->  ph )
2 ax-17 1603 . 2  |-  ( ph  ->  A. x ph )
31, 2impbii 180 1  |-  ( A. x ph  <->  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 176   A.wal 1527
This theorem is referenced by:  19.9v  1663
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529
  Copyright terms: Public domain W3C validator