MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.42 Unicode version

Theorem 19.42 1800
Description: Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
19.42.1  |-  F/ x ph
Assertion
Ref Expression
19.42  |-  ( E. x ( ph  /\  ps )  <->  ( ph  /\  E. x ps ) )

Proof of Theorem 19.42
StepHypRef Expression
1 19.42.1 . . 3  |-  F/ x ph
2119.41 1799 . 2  |-  ( E. x ( ps  /\  ph )  <->  ( E. x ps  /\  ph ) )
3 exancom 1584 . 2  |-  ( E. x ( ph  /\  ps )  <->  E. x ( ps 
/\  ph ) )
4 ancom 439 . 2  |-  ( (
ph  /\  E. x ps )  <->  ( E. x ps  /\  ph ) )
52, 3, 43bitr4i 270 1  |-  ( E. x ( ph  /\  ps )  <->  ( ph  /\  E. x ps ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360   E.wex 1537   F/wnf 1539
This theorem is referenced by:  19.42v  2038  eean  2054  r2exf  2541  bnj596  27464  bnj916  27654  bnj983  27672
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-gen 1536  ax-4 1692
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1538  df-nf 1540
  Copyright terms: Public domain W3C validator