MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.42 Structured version   Unicode version

Theorem 19.42 1903
Description: Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
19.42.1  |-  F/ x ph
Assertion
Ref Expression
19.42  |-  ( E. x ( ph  /\  ps )  <->  ( ph  /\  E. x ps ) )

Proof of Theorem 19.42
StepHypRef Expression
1 19.42.1 . . 3  |-  F/ x ph
2119.41 1901 . 2  |-  ( E. x ( ps  /\  ph )  <->  ( E. x ps  /\  ph ) )
3 exancom 1597 . 2  |-  ( E. x ( ph  /\  ps )  <->  E. x ( ps 
/\  ph ) )
4 ancom 439 . 2  |-  ( (
ph  /\  E. x ps )  <->  ( E. x ps  /\  ph ) )
52, 3, 43bitr4i 270 1  |-  ( E. x ( ph  /\  ps )  <->  ( ph  /\  E. x ps ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360   E.wex 1551   F/wnf 1554
This theorem is referenced by:  19.42v  1929  eean  1937  r2exf  2743  bnj596  29176  bnj916  29366  bnj983  29384  eeanOLD7  29764
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-11 1762
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552  df-nf 1555
  Copyright terms: Public domain W3C validator