MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.8w Unicode version

Theorem 19.8w 1672
Description: Weak version of 19.8a 1762. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 1-Aug-2017.) (Proof shortened by Wolf Lammen, 4-Dec-2017.)
Hypothesis
Ref Expression
19.8w.1  |-  ( ph  ->  A. x ph )
Assertion
Ref Expression
19.8w  |-  ( ph  ->  E. x ph )

Proof of Theorem 19.8w
StepHypRef Expression
1 19.8w.1 . 2  |-  ( ph  ->  A. x ph )
2 19.2 1671 . 2  |-  ( A. x ph  ->  E. x ph )
31, 2syl 16 1  |-  ( ph  ->  E. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1549   E.wex 1550
This theorem is referenced by:  19.9v  1676
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-9 1666
This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551
  Copyright terms: Public domain W3C validator