MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.8w Structured version   Unicode version

Theorem 19.8w 1675
Description: Weak version of 19.8a 1765. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 1-Aug-2017.) (Proof shortened by Wolf Lammen, 4-Dec-2017.)
Hypothesis
Ref Expression
19.8w.1  |-  ( ph  ->  A. x ph )
Assertion
Ref Expression
19.8w  |-  ( ph  ->  E. x ph )

Proof of Theorem 19.8w
StepHypRef Expression
1 19.8w.1 . 2  |-  ( ph  ->  A. x ph )
2 19.2 1674 . 2  |-  ( A. x ph  ->  E. x ph )
31, 2syl 16 1  |-  ( ph  ->  E. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1550   E.wex 1551
This theorem is referenced by:  19.9v  1679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-9 1669
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552
  Copyright terms: Public domain W3C validator