Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.9d Unicode version

Theorem 19.9d 1796
 Description: A deduction version of one direction of 19.9 1795. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
Hypothesis
Ref Expression
19.9d.1
Assertion
Ref Expression
19.9d

Proof of Theorem 19.9d
StepHypRef Expression
1 19.9d.1 . . 3
2 19.9t 1794 . . 3
31, 2syl 15 . 2
43biimpd 198 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 176  wex 1531  wnf 1534 This theorem is referenced by:  exdistrf  1924  sbied  1989  sbequi  2012  copsexg  4268  19.9d2rf  23198  19.9d2r  23199  exdistrfNEW7  29482  sbiedNEW7  29515  sbequiNEW7  29553 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-11 1727 This theorem depends on definitions:  df-bi 177  df-ex 1532  df-nf 1535
 Copyright terms: Public domain W3C validator