Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  19.9d2rf Unicode version

Theorem 19.9d2rf 23198
Description: A deduction version of one direction of 19.9 1795 with two variables (Contributed by Thierry Arnoux, 20-Mar-2017.)
Hypotheses
Ref Expression
19.9d2rf.0  |-  F/ y
ph
19.9d2rf.1  |-  ( ph  ->  F/ x ps )
19.9d2rf.2  |-  ( ph  ->  F/ y ps )
19.9d2rf.3  |-  ( ph  ->  E. x  e.  A  E. y  e.  B  ps )
Assertion
Ref Expression
19.9d2rf  |-  ( ph  ->  ps )

Proof of Theorem 19.9d2rf
StepHypRef Expression
1 19.9d2rf.3 . . . 4  |-  ( ph  ->  E. x  e.  A  E. y  e.  B  ps )
2 rexex 2615 . . . 4  |-  ( E. x  e.  A  E. y  e.  B  ps  ->  E. x E. y  e.  B  ps )
3 rexex 2615 . . . . 5  |-  ( E. y  e.  B  ps  ->  E. y ps )
43eximi 1566 . . . 4  |-  ( E. x E. y  e.  B  ps  ->  E. x E. y ps )
51, 2, 43syl 18 . . 3  |-  ( ph  ->  E. x E. y ps )
6 19.9d2rf.0 . . . . 5  |-  F/ y
ph
7 19.9d2rf.1 . . . . 5  |-  ( ph  ->  F/ x ps )
86, 7nfexd 1788 . . . 4  |-  ( ph  ->  F/ x E. y ps )
9819.9d 1796 . . 3  |-  ( ph  ->  ( E. x E. y ps  ->  E. y ps ) )
105, 9mpd 14 . 2  |-  ( ph  ->  E. y ps )
11 19.9d2rf.2 . . 3  |-  ( ph  ->  F/ y ps )
121119.9d 1796 . 2  |-  ( ph  ->  ( E. y ps 
->  ps ) )
1310, 12mpd 14 1  |-  ( ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1531   F/wnf 1534   E.wrex 2557
This theorem is referenced by:  xrofsup  23270
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1532  df-nf 1535  df-rex 2562
  Copyright terms: Public domain W3C validator