Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.9h Structured version   Unicode version

Theorem 19.9h 1794
 Description: A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.) (Proof shortened by Wolf Lammen, 5-Jan-2018.)
Hypothesis
Ref Expression
19.9h.1
Assertion
Ref Expression
19.9h

Proof of Theorem 19.9h
StepHypRef Expression
1 19.9h.1 . . 3
21nfi 1560 . 2
3 19.9t 1793 . 2
42, 3ax-mp 8 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177  wal 1549  wex 1550  wnf 1553 This theorem is referenced by:  19.9  1797  19.23hOLD  1839  cbv3hv  1878  bnj1131  29059  bnj1397  29107 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-11 1761 This theorem depends on definitions:  df-bi 178  df-ex 1551  df-nf 1554
 Copyright terms: Public domain W3C validator