MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.9h Unicode version

Theorem 19.9h 1788
Description: A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.) (Proof shortened by Wolf Lammen, 5-Jan-2018.)
Hypothesis
Ref Expression
19.9h.1  |-  ( ph  ->  A. x ph )
Assertion
Ref Expression
19.9h  |-  ( E. x ph  <->  ph )

Proof of Theorem 19.9h
StepHypRef Expression
1 19.9h.1 . . 3  |-  ( ph  ->  A. x ph )
21nfi 1557 . 2  |-  F/ x ph
3 19.9t 1787 . 2  |-  ( F/ x ph  ->  ( E. x ph  <->  ph ) )
42, 3ax-mp 8 1  |-  ( E. x ph  <->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177   A.wal 1546   E.wex 1547   F/wnf 1550
This theorem is referenced by:  19.9  1791  19.23hOLD  1829  cbv3hv  1862  bnj1131  28498  bnj1397  28546
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-11 1753
This theorem depends on definitions:  df-bi 178  df-ex 1548  df-nf 1551
  Copyright terms: Public domain W3C validator