MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.9v Unicode version

Theorem 19.9v 2011
Description: Special case of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 28-May-1995.)
Assertion
Ref Expression
19.9v  |-  ( E. x ph  <->  ph )
Distinct variable group:    ph, x

Proof of Theorem 19.9v
StepHypRef Expression
1 nfv 1629 . 2  |-  F/ x ph
2119.9 1762 1  |-  ( E. x ph  <->  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 178   E.wex 1537
This theorem is referenced by:  zfcndpow  8192  prter2  26102  rfcnnnub  27061  relopabVD  27711  bnj937  27836  bnj594  27977  bnj907  28030  bnj1128  28053  bnj1145  28056
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-gen 1536  ax-17 1628  ax-4 1692
This theorem depends on definitions:  df-bi 179  df-ex 1538  df-nf 1540
  Copyright terms: Public domain W3C validator