MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.9v Structured version   Unicode version

Theorem 19.9v 1676
Description: Special case of Theorem 19.9 of [Margaris] p. 89. Revised to remove dependency on ax-8 1687. (Contributed by NM, 28-May-1995.) (Revised by NM, 1-Aug-2017.) (Revised by Wolf Lammen, 4-Dec-2017.)
Assertion
Ref Expression
19.9v  |-  ( E. x ph  <->  ph )
Distinct variable group:    ph, x

Proof of Theorem 19.9v
StepHypRef Expression
1 ax17e 1628 . 2  |-  ( E. x ph  ->  ph )
2 ax-17 1626 . . 3  |-  ( ph  ->  A. x ph )
3219.8w 1672 . 2  |-  ( ph  ->  E. x ph )
41, 3impbii 181 1  |-  ( E. x ph  <->  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 177   E.wex 1550
This theorem is referenced by:  19.3v  1677  exlimivOLD  1711  zfcndpow  8491  volfiniune  24586  prter2  26730  rfcnnnub  27683  relopabVD  29013  bnj937  29142  bnj594  29283  bnj907  29336  bnj1128  29359  bnj1145  29362
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666
This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551
  Copyright terms: Public domain W3C validator