MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1arith2 Unicode version

Theorem 1arith2 12937
Description: Fundamental theorem of arithmetic, where a prime factorization is represented as a finite monotonic 1-based sequence of primes. Every positive integer has a unique prime factorization. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
1arith.1  |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p  pCnt  n ) ) )
1arith.2  |-  R  =  { e  e.  ( NN0  ^m  Prime )  |  ( `' e
" NN )  e. 
Fin }
Assertion
Ref Expression
1arith2  |-  A. z  e.  NN  E! g  e.  R  ( M `  z )  =  g
Distinct variable groups:    e, g, n, p, z    e, M, g    R, g, n
Allowed substitution hints:    R( z, e, p)    M( z, n, p)

Proof of Theorem 1arith2
StepHypRef Expression
1 1arith.1 . . . . . 6  |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p  pCnt  n ) ) )
2 1arith.2 . . . . . 6  |-  R  =  { e  e.  ( NN0  ^m  Prime )  |  ( `' e
" NN )  e. 
Fin }
31, 21arith 12936 . . . . 5  |-  M : NN
-1-1-onto-> R
4 f1ocnv 5423 . . . . 5  |-  ( M : NN -1-1-onto-> R  ->  `' M : R -1-1-onto-> NN )
53, 4ax-mp 10 . . . 4  |-  `' M : R -1-1-onto-> NN
6 f1ofveu 6307 . . . 4  |-  ( ( `' M : R -1-1-onto-> NN  /\  z  e.  NN )  ->  E! g  e.  R  ( `' M `  g )  =  z )
75, 6mpan 654 . . 3  |-  ( z  e.  NN  ->  E! g  e.  R  ( `' M `  g )  =  z )
8 f1ocnvfvb 5729 . . . . 5  |-  ( ( M : NN -1-1-onto-> R  /\  z  e.  NN  /\  g  e.  R )  ->  (
( M `  z
)  =  g  <->  ( `' M `  g )  =  z ) )
93, 8mp3an1 1269 . . . 4  |-  ( ( z  e.  NN  /\  g  e.  R )  ->  ( ( M `  z )  =  g  <-> 
( `' M `  g )  =  z ) )
109reubidva 2698 . . 3  |-  ( z  e.  NN  ->  ( E! g  e.  R  ( M `  z )  =  g  <->  E! g  e.  R  ( `' M `  g )  =  z ) )
117, 10mpbird 225 . 2  |-  ( z  e.  NN  ->  E! g  e.  R  ( M `  z )  =  g )
1211rgen 2583 1  |-  A. z  e.  NN  E! g  e.  R  ( M `  z )  =  g
Colors of variables: wff set class
Syntax hints:    <-> wb 178    = wceq 1619    e. wcel 1621   A.wral 2518   E!wreu 2520   {crab 2522    e. cmpt 4051   `'ccnv 4660   "cima 4664   -1-1-onto->wf1o 4672   ` cfv 4673  (class class class)co 5792    ^m cmap 6740   Fincfn 6831   NNcn 9714   NN0cn0 9932   Primecprime 12720    pCnt cpc 12851
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-2o 6448  df-oadd 6451  df-er 6628  df-map 6742  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-sup 7162  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-n0 9933  df-z 9992  df-uz 10198  df-q 10284  df-rp 10322  df-fz 10749  df-fl 10891  df-mod 10940  df-seq 11013  df-exp 11071  df-cj 11549  df-re 11550  df-im 11551  df-sqr 11685  df-abs 11686  df-divides 12494  df-gcd 12648  df-prime 12721  df-pc 12852
  Copyright terms: Public domain W3C validator