MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1arith2 Unicode version

Theorem 1arith2 13251
Description: Fundamental theorem of arithmetic, where a prime factorization is represented as a finite monotonic 1-based sequence of primes. Every positive integer has a unique prime factorization. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
1arith.1  |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p  pCnt  n ) ) )
1arith.2  |-  R  =  { e  e.  ( NN0  ^m  Prime )  |  ( `' e
" NN )  e. 
Fin }
Assertion
Ref Expression
1arith2  |-  A. z  e.  NN  E! g  e.  R  ( M `  z )  =  g
Distinct variable groups:    e, g, n, p, z    e, M, g    R, g, n
Allowed substitution hints:    R( z, e, p)    M( z, n, p)

Proof of Theorem 1arith2
StepHypRef Expression
1 1arith.1 . . . . . 6  |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p  pCnt  n ) ) )
2 1arith.2 . . . . . 6  |-  R  =  { e  e.  ( NN0  ^m  Prime )  |  ( `' e
" NN )  e. 
Fin }
31, 21arith 13250 . . . . 5  |-  M : NN
-1-1-onto-> R
4 f1ocnv 5646 . . . . 5  |-  ( M : NN -1-1-onto-> R  ->  `' M : R -1-1-onto-> NN )
53, 4ax-mp 8 . . . 4  |-  `' M : R -1-1-onto-> NN
6 f1ofveu 6543 . . . 4  |-  ( ( `' M : R -1-1-onto-> NN  /\  z  e.  NN )  ->  E! g  e.  R  ( `' M `  g )  =  z )
75, 6mpan 652 . . 3  |-  ( z  e.  NN  ->  E! g  e.  R  ( `' M `  g )  =  z )
8 f1ocnvfvb 5976 . . . . 5  |-  ( ( M : NN -1-1-onto-> R  /\  z  e.  NN  /\  g  e.  R )  ->  (
( M `  z
)  =  g  <->  ( `' M `  g )  =  z ) )
93, 8mp3an1 1266 . . . 4  |-  ( ( z  e.  NN  /\  g  e.  R )  ->  ( ( M `  z )  =  g  <-> 
( `' M `  g )  =  z ) )
109reubidva 2851 . . 3  |-  ( z  e.  NN  ->  ( E! g  e.  R  ( M `  z )  =  g  <->  E! g  e.  R  ( `' M `  g )  =  z ) )
117, 10mpbird 224 . 2  |-  ( z  e.  NN  ->  E! g  e.  R  ( M `  z )  =  g )
1211rgen 2731 1  |-  A. z  e.  NN  E! g  e.  R  ( M `  z )  =  g
Colors of variables: wff set class
Syntax hints:    <-> wb 177    = wceq 1649    e. wcel 1721   A.wral 2666   E!wreu 2668   {crab 2670    e. cmpt 4226   `'ccnv 4836   "cima 4840   -1-1-onto->wf1o 5412   ` cfv 5413  (class class class)co 6040    ^m cmap 6977   Fincfn 7068   NNcn 9956   NN0cn0 10177   Primecprime 13034    pCnt cpc 13165
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-q 10531  df-rp 10569  df-fz 11000  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-dvds 12808  df-gcd 12962  df-prm 13035  df-pc 13166
  Copyright terms: Public domain W3C validator