MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1arithlem1 Unicode version

Theorem 1arithlem1 12844
Description: Lemma for 1arith 12848. (Contributed by Mario Carneiro, 30-May-2014.)
Hypothesis
Ref Expression
1arith.1  |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p  pCnt  n ) ) )
Assertion
Ref Expression
1arithlem1  |-  ( N  e.  NN  ->  ( M `  N )  =  ( p  e. 
Prime  |->  ( p  pCnt  N ) ) )
Distinct variable group:    n, p, N
Allowed substitution hints:    M( n, p)

Proof of Theorem 1arithlem1
StepHypRef Expression
1 oveq2 5718 . . 3  |-  ( n  =  N  ->  (
p  pCnt  n )  =  ( p  pCnt  N ) )
21mpteq2dv 4004 . 2  |-  ( n  =  N  ->  (
p  e.  Prime  |->  ( p 
pCnt  n ) )  =  ( p  e.  Prime  |->  ( p  pCnt  N ) ) )
3 1arith.1 . 2  |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p  pCnt  n ) ) )
4 zex 9912 . . . 4  |-  ZZ  e.  _V
5 prmz 12635 . . . . 5  |-  ( n  e.  Prime  ->  n  e.  ZZ )
65ssriv 3105 . . . 4  |-  Prime  C_  ZZ
74, 6ssexi 4056 . . 3  |-  Prime  e.  _V
87mptex 5598 . 2  |-  ( p  e.  Prime  |->  ( p 
pCnt  N ) )  e. 
_V
92, 3, 8fvmpt 5454 1  |-  ( N  e.  NN  ->  ( M `  N )  =  ( p  e. 
Prime  |->  ( p  pCnt  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619    e. wcel 1621    e. cmpt 3974   ` cfv 4592  (class class class)co 5710   NNcn 9626   ZZcz 9903   Primecprime 12632    pCnt cpc 12763
This theorem is referenced by:  1arithlem2  12845  1arithlem3  12846  sqff1o  20252
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-n 9627  df-n0 9845  df-z 9904  df-prime 12633
  Copyright terms: Public domain W3C validator