MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1cubr Structured version   Unicode version

Theorem 1cubr 20687
Description: The cube roots of unity. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypothesis
Ref Expression
1cubr.r  |-  R  =  { 1 ,  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 ) ,  ( ( -u
1  -  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) }
Assertion
Ref Expression
1cubr  |-  ( A  e.  R  <->  ( A  e.  CC  /\  ( A ^ 3 )  =  1 ) )

Proof of Theorem 1cubr
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 1cubr.r . . . . 5  |-  R  =  { 1 ,  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 ) ,  ( ( -u
1  -  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) }
2 ax-1cn 9053 . . . . . . 7  |-  1  e.  CC
3 neg1cn 10072 . . . . . . . . 9  |-  -u 1  e.  CC
4 ax-icn 9054 . . . . . . . . . 10  |-  _i  e.  CC
5 3cn 10077 . . . . . . . . . . 11  |-  3  e.  CC
6 sqrcl 12170 . . . . . . . . . . 11  |-  ( 3  e.  CC  ->  ( sqr `  3 )  e.  CC )
75, 6ax-mp 5 . . . . . . . . . 10  |-  ( sqr `  3 )  e.  CC
84, 7mulcli 9100 . . . . . . . . 9  |-  ( _i  x.  ( sqr `  3
) )  e.  CC
93, 8addcli 9099 . . . . . . . 8  |-  ( -u
1  +  ( _i  x.  ( sqr `  3
) ) )  e.  CC
10 halfcl 10198 . . . . . . . 8  |-  ( (
-u 1  +  ( _i  x.  ( sqr `  3 ) ) )  e.  CC  ->  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 )  e.  CC )
119, 10ax-mp 5 . . . . . . 7  |-  ( (
-u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 )  e.  CC
123, 8subcli 9381 . . . . . . . 8  |-  ( -u
1  -  ( _i  x.  ( sqr `  3
) ) )  e.  CC
13 halfcl 10198 . . . . . . . 8  |-  ( (
-u 1  -  (
_i  x.  ( sqr `  3 ) ) )  e.  CC  ->  (
( -u 1  -  (
_i  x.  ( sqr `  3 ) ) )  /  2 )  e.  CC )
1412, 13ax-mp 5 . . . . . . 7  |-  ( (
-u 1  -  (
_i  x.  ( sqr `  3 ) ) )  /  2 )  e.  CC
152, 11, 143pm3.2i 1133 . . . . . 6  |-  ( 1  e.  CC  /\  (
( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 )  e.  CC  /\  (
( -u 1  -  (
_i  x.  ( sqr `  3 ) ) )  /  2 )  e.  CC )
162elexi 2967 . . . . . . 7  |-  1  e.  _V
17 ovex 6109 . . . . . . 7  |-  ( (
-u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 )  e.  _V
18 ovex 6109 . . . . . . 7  |-  ( (
-u 1  -  (
_i  x.  ( sqr `  3 ) ) )  /  2 )  e. 
_V
1916, 17, 18tpss 3966 . . . . . 6  |-  ( ( 1  e.  CC  /\  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2
)  e.  CC  /\  ( ( -u 1  -  ( _i  x.  ( sqr `  3 ) ) )  /  2
)  e.  CC )  <->  { 1 ,  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 ) ,  ( ( -u
1  -  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) }  C_  CC )
2015, 19mpbi 201 . . . . 5  |-  { 1 ,  ( ( -u
1  +  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) ,  ( ( -u 1  -  ( _i  x.  ( sqr `  3 ) ) )  /  2 ) }  C_  CC
211, 20eqsstri 3380 . . . 4  |-  R  C_  CC
2221sseli 3346 . . 3  |-  ( A  e.  R  ->  A  e.  CC )
2322pm4.71ri 616 . 2  |-  ( A  e.  R  <->  ( A  e.  CC  /\  A  e.  R ) )
24 3nn 10139 . . . . 5  |-  3  e.  NN
25 cxpeq 20646 . . . . 5  |-  ( ( A  e.  CC  /\  3  e.  NN  /\  1  e.  CC )  ->  (
( A ^ 3 )  =  1  <->  E. n  e.  ( 0 ... ( 3  -  1 ) ) A  =  ( ( 1  ^ c  ( 1  /  3 ) )  x.  ( ( -u
1  ^ c  ( 2  /  3 ) ) ^ n ) ) ) )
2624, 2, 25mp3an23 1272 . . . 4  |-  ( A  e.  CC  ->  (
( A ^ 3 )  =  1  <->  E. n  e.  ( 0 ... ( 3  -  1 ) ) A  =  ( ( 1  ^ c  ( 1  /  3 ) )  x.  ( ( -u
1  ^ c  ( 2  /  3 ) ) ^ n ) ) ) )
27 eltpg 3853 . . . . 5  |-  ( A  e.  CC  ->  ( A  e.  { 1 ,  ( ( -u
1  +  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) ,  ( ( -u 1  -  ( _i  x.  ( sqr `  3 ) ) )  /  2 ) }  <->  ( A  =  1  \/  A  =  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2
)  \/  A  =  ( ( -u 1  -  ( _i  x.  ( sqr `  3 ) ) )  /  2
) ) ) )
281eleq2i 2502 . . . . 5  |-  ( A  e.  R  <->  A  e.  { 1 ,  ( (
-u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 ) ,  ( ( -u
1  -  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) } )
29 3m1e2 10101 . . . . . . . . . 10  |-  ( 3  -  1 )  =  2
30 2cn 10075 . . . . . . . . . . 11  |-  2  e.  CC
3130addid2i 9259 . . . . . . . . . 10  |-  ( 0  +  2 )  =  2
3229, 31eqtr4i 2461 . . . . . . . . 9  |-  ( 3  -  1 )  =  ( 0  +  2 )
3332oveq2i 6095 . . . . . . . 8  |-  ( 0 ... ( 3  -  1 ) )  =  ( 0 ... (
0  +  2 ) )
34 0z 10298 . . . . . . . . 9  |-  0  e.  ZZ
35 fztp 11107 . . . . . . . . 9  |-  ( 0  e.  ZZ  ->  (
0 ... ( 0  +  2 ) )  =  { 0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) } )
3634, 35ax-mp 5 . . . . . . . 8  |-  ( 0 ... ( 0  +  2 ) )  =  { 0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) }
3733, 36eqtri 2458 . . . . . . 7  |-  ( 0 ... ( 3  -  1 ) )  =  { 0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) }
3837rexeqi 2911 . . . . . 6  |-  ( E. n  e.  ( 0 ... ( 3  -  1 ) ) A  =  ( ( 1  ^ c  ( 1  /  3 ) )  x.  ( ( -u
1  ^ c  ( 2  /  3 ) ) ^ n ) )  <->  E. n  e.  {
0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) } A  =  ( ( 1  ^ c  ( 1  / 
3 ) )  x.  ( ( -u 1  ^ c  ( 2  /  3 ) ) ^ n ) ) )
39 3ne0 10090 . . . . . . . . . . 11  |-  3  =/=  0
405, 39reccli 9749 . . . . . . . . . 10  |-  ( 1  /  3 )  e.  CC
41 1cxp 20568 . . . . . . . . . 10  |-  ( ( 1  /  3 )  e.  CC  ->  (
1  ^ c  ( 1  /  3 ) )  =  1 )
4240, 41ax-mp 5 . . . . . . . . 9  |-  ( 1  ^ c  ( 1  /  3 ) )  =  1
4342oveq1i 6094 . . . . . . . 8  |-  ( ( 1  ^ c  ( 1  /  3 ) )  x.  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ n
) )  =  ( 1  x.  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ n
) )
4443eqeq2i 2448 . . . . . . 7  |-  ( A  =  ( ( 1  ^ c  ( 1  /  3 ) )  x.  ( ( -u
1  ^ c  ( 2  /  3 ) ) ^ n ) )  <->  A  =  (
1  x.  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ n
) ) )
4544rexbii 2732 . . . . . 6  |-  ( E. n  e.  { 0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) } A  =  ( ( 1  ^ c 
( 1  /  3
) )  x.  (
( -u 1  ^ c 
( 2  /  3
) ) ^ n
) )  <->  E. n  e.  { 0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) } A  =  ( 1  x.  ( ( -u 1  ^ c  ( 2  /  3 ) ) ^ n ) ) )
4634elexi 2967 . . . . . . 7  |-  0  e.  _V
47 ovex 6109 . . . . . . 7  |-  ( 0  +  1 )  e. 
_V
48 ovex 6109 . . . . . . 7  |-  ( 0  +  2 )  e. 
_V
49 oveq2 6092 . . . . . . . . . . 11  |-  ( n  =  0  ->  (
( -u 1  ^ c 
( 2  /  3
) ) ^ n
)  =  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ 0 ) )
5030, 5, 39divcli 9761 . . . . . . . . . . . . 13  |-  ( 2  /  3 )  e.  CC
51 cxpcl 20570 . . . . . . . . . . . . 13  |-  ( (
-u 1  e.  CC  /\  ( 2  /  3
)  e.  CC )  ->  ( -u 1  ^ c  ( 2  /  3 ) )  e.  CC )
523, 50, 51mp2an 655 . . . . . . . . . . . 12  |-  ( -u
1  ^ c  ( 2  /  3 ) )  e.  CC
53 exp0 11391 . . . . . . . . . . . 12  |-  ( (
-u 1  ^ c 
( 2  /  3
) )  e.  CC  ->  ( ( -u 1  ^ c  ( 2  /  3 ) ) ^ 0 )  =  1 )
5452, 53ax-mp 5 . . . . . . . . . . 11  |-  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ 0 )  =  1
5549, 54syl6eq 2486 . . . . . . . . . 10  |-  ( n  =  0  ->  (
( -u 1  ^ c 
( 2  /  3
) ) ^ n
)  =  1 )
5655oveq2d 6100 . . . . . . . . 9  |-  ( n  =  0  ->  (
1  x.  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ n
) )  =  ( 1  x.  1 ) )
57 1t1e1 10131 . . . . . . . . 9  |-  ( 1  x.  1 )  =  1
5856, 57syl6eq 2486 . . . . . . . 8  |-  ( n  =  0  ->  (
1  x.  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ n
) )  =  1 )
5958eqeq2d 2449 . . . . . . 7  |-  ( n  =  0  ->  ( A  =  ( 1  x.  ( ( -u
1  ^ c  ( 2  /  3 ) ) ^ n ) )  <->  A  =  1
) )
60 id 21 . . . . . . . . . . . . 13  |-  ( n  =  ( 0  +  1 )  ->  n  =  ( 0  +  1 ) )
612addid2i 9259 . . . . . . . . . . . . 13  |-  ( 0  +  1 )  =  1
6260, 61syl6eq 2486 . . . . . . . . . . . 12  |-  ( n  =  ( 0  +  1 )  ->  n  =  1 )
6362oveq2d 6100 . . . . . . . . . . 11  |-  ( n  =  ( 0  +  1 )  ->  (
( -u 1  ^ c 
( 2  /  3
) ) ^ n
)  =  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ 1 ) )
64 exp1 11392 . . . . . . . . . . . 12  |-  ( (
-u 1  ^ c 
( 2  /  3
) )  e.  CC  ->  ( ( -u 1  ^ c  ( 2  /  3 ) ) ^ 1 )  =  ( -u 1  ^ c  ( 2  / 
3 ) ) )
6552, 64ax-mp 5 . . . . . . . . . . 11  |-  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ 1 )  =  ( -u
1  ^ c  ( 2  /  3 ) )
6663, 65syl6eq 2486 . . . . . . . . . 10  |-  ( n  =  ( 0  +  1 )  ->  (
( -u 1  ^ c 
( 2  /  3
) ) ^ n
)  =  ( -u
1  ^ c  ( 2  /  3 ) ) )
6766oveq2d 6100 . . . . . . . . 9  |-  ( n  =  ( 0  +  1 )  ->  (
1  x.  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ n
) )  =  ( 1  x.  ( -u
1  ^ c  ( 2  /  3 ) ) ) )
6852mulid2i 9098 . . . . . . . . . 10  |-  ( 1  x.  ( -u 1  ^ c  ( 2  /  3 ) ) )  =  ( -u
1  ^ c  ( 2  /  3 ) )
69 1cubrlem 20686 . . . . . . . . . . 11  |-  ( (
-u 1  ^ c 
( 2  /  3
) )  =  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 )  /\  ( ( -u
1  ^ c  ( 2  /  3 ) ) ^ 2 )  =  ( ( -u
1  -  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) )
7069simpli 446 . . . . . . . . . 10  |-  ( -u
1  ^ c  ( 2  /  3 ) )  =  ( (
-u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 )
7168, 70eqtri 2458 . . . . . . . . 9  |-  ( 1  x.  ( -u 1  ^ c  ( 2  /  3 ) ) )  =  ( (
-u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 )
7267, 71syl6eq 2486 . . . . . . . 8  |-  ( n  =  ( 0  +  1 )  ->  (
1  x.  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ n
) )  =  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 ) )
7372eqeq2d 2449 . . . . . . 7  |-  ( n  =  ( 0  +  1 )  ->  ( A  =  ( 1  x.  ( ( -u
1  ^ c  ( 2  /  3 ) ) ^ n ) )  <->  A  =  (
( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 ) ) )
74 id 21 . . . . . . . . . . . 12  |-  ( n  =  ( 0  +  2 )  ->  n  =  ( 0  +  2 ) )
7574, 31syl6eq 2486 . . . . . . . . . . 11  |-  ( n  =  ( 0  +  2 )  ->  n  =  2 )
7675oveq2d 6100 . . . . . . . . . 10  |-  ( n  =  ( 0  +  2 )  ->  (
( -u 1  ^ c 
( 2  /  3
) ) ^ n
)  =  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ 2 ) )
7776oveq2d 6100 . . . . . . . . 9  |-  ( n  =  ( 0  +  2 )  ->  (
1  x.  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ n
) )  =  ( 1  x.  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ 2 ) ) )
7852sqcli 11467 . . . . . . . . . . 11  |-  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ 2 )  e.  CC
7978mulid2i 9098 . . . . . . . . . 10  |-  ( 1  x.  ( ( -u
1  ^ c  ( 2  /  3 ) ) ^ 2 ) )  =  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ 2 )
8069simpri 450 . . . . . . . . . 10  |-  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ 2 )  =  ( (
-u 1  -  (
_i  x.  ( sqr `  3 ) ) )  /  2 )
8179, 80eqtri 2458 . . . . . . . . 9  |-  ( 1  x.  ( ( -u
1  ^ c  ( 2  /  3 ) ) ^ 2 ) )  =  ( (
-u 1  -  (
_i  x.  ( sqr `  3 ) ) )  /  2 )
8277, 81syl6eq 2486 . . . . . . . 8  |-  ( n  =  ( 0  +  2 )  ->  (
1  x.  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ n
) )  =  ( ( -u 1  -  ( _i  x.  ( sqr `  3 ) ) )  /  2 ) )
8382eqeq2d 2449 . . . . . . 7  |-  ( n  =  ( 0  +  2 )  ->  ( A  =  ( 1  x.  ( ( -u
1  ^ c  ( 2  /  3 ) ) ^ n ) )  <->  A  =  (
( -u 1  -  (
_i  x.  ( sqr `  3 ) ) )  /  2 ) ) )
8446, 47, 48, 59, 73, 83rextp 3866 . . . . . 6  |-  ( E. n  e.  { 0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) } A  =  ( 1  x.  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ n
) )  <->  ( A  =  1  \/  A  =  ( ( -u
1  +  ( _i  x.  ( sqr `  3
) ) )  / 
2 )  \/  A  =  ( ( -u
1  -  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) ) )
8538, 45, 843bitri 264 . . . . 5  |-  ( E. n  e.  ( 0 ... ( 3  -  1 ) ) A  =  ( ( 1  ^ c  ( 1  /  3 ) )  x.  ( ( -u
1  ^ c  ( 2  /  3 ) ) ^ n ) )  <->  ( A  =  1  \/  A  =  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2
)  \/  A  =  ( ( -u 1  -  ( _i  x.  ( sqr `  3 ) ) )  /  2
) ) )
8627, 28, 853bitr4g 281 . . . 4  |-  ( A  e.  CC  ->  ( A  e.  R  <->  E. n  e.  ( 0 ... (
3  -  1 ) ) A  =  ( ( 1  ^ c 
( 1  /  3
) )  x.  (
( -u 1  ^ c 
( 2  /  3
) ) ^ n
) ) ) )
8726, 86bitr4d 249 . . 3  |-  ( A  e.  CC  ->  (
( A ^ 3 )  =  1  <->  A  e.  R ) )
8887pm5.32i 620 . 2  |-  ( ( A  e.  CC  /\  ( A ^ 3 )  =  1 )  <->  ( A  e.  CC  /\  A  e.  R ) )
8923, 88bitr4i 245 1  |-  ( A  e.  R  <->  ( A  e.  CC  /\  ( A ^ 3 )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360    \/ w3o 936    /\ w3a 937    = wceq 1653    e. wcel 1726   E.wrex 2708    C_ wss 3322   {ctp 3818   ` cfv 5457  (class class class)co 6084   CCcc 8993   0cc0 8995   1c1 8996   _ici 8997    + caddc 8998    x. cmul 9000    - cmin 9296   -ucneg 9297    / cdiv 9682   NNcn 10005   2c2 10054   3c3 10055   ZZcz 10287   ...cfz 11048   ^cexp 11387   sqrcsqr 12043    ^ c ccxp 20458
This theorem is referenced by:  cubic  20694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073  ax-addf 9074  ax-mulf 9075
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-of 6308  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-oadd 6731  df-er 6908  df-map 7023  df-pm 7024  df-ixp 7067  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-fi 7419  df-sup 7449  df-oi 7482  df-card 7831  df-cda 8053  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-4 10065  df-5 10066  df-6 10067  df-7 10068  df-8 10069  df-9 10070  df-10 10071  df-n0 10227  df-z 10288  df-dec 10388  df-uz 10494  df-q 10580  df-rp 10618  df-xneg 10715  df-xadd 10716  df-xmul 10717  df-ioo 10925  df-ioc 10926  df-ico 10927  df-icc 10928  df-fz 11049  df-fzo 11141  df-fl 11207  df-mod 11256  df-seq 11329  df-exp 11388  df-fac 11572  df-bc 11599  df-hash 11624  df-shft 11887  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-limsup 12270  df-clim 12287  df-rlim 12288  df-sum 12485  df-ef 12675  df-sin 12677  df-cos 12678  df-pi 12680  df-struct 13476  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-ress 13481  df-plusg 13547  df-mulr 13548  df-starv 13549  df-sca 13550  df-vsca 13551  df-tset 13553  df-ple 13554  df-ds 13556  df-unif 13557  df-hom 13558  df-cco 13559  df-rest 13655  df-topn 13656  df-topgen 13672  df-pt 13673  df-prds 13676  df-xrs 13731  df-0g 13732  df-gsum 13733  df-qtop 13738  df-imas 13739  df-xps 13741  df-mre 13816  df-mrc 13817  df-acs 13819  df-mnd 14695  df-submnd 14744  df-mulg 14820  df-cntz 15121  df-cmn 15419  df-psmet 16699  df-xmet 16700  df-met 16701  df-bl 16702  df-mopn 16703  df-fbas 16704  df-fg 16705  df-cnfld 16709  df-top 16968  df-bases 16970  df-topon 16971  df-topsp 16972  df-cld 17088  df-ntr 17089  df-cls 17090  df-nei 17167  df-lp 17205  df-perf 17206  df-cn 17296  df-cnp 17297  df-haus 17384  df-tx 17599  df-hmeo 17792  df-fil 17883  df-fm 17975  df-flim 17976  df-flf 17977  df-xms 18355  df-ms 18356  df-tms 18357  df-cncf 18913  df-limc 19758  df-dv 19759  df-log 20459  df-cxp 20460
  Copyright terms: Public domain W3C validator