MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1cubrlem Unicode version

Theorem 1cubrlem 20550
Description: The cube roots of unity. (Contributed by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
1cubrlem  |-  ( (
-u 1  ^ c 
( 2  /  3
) )  =  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 )  /\  ( ( -u
1  ^ c  ( 2  /  3 ) ) ^ 2 )  =  ( ( -u
1  -  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) )

Proof of Theorem 1cubrlem
StepHypRef Expression
1 neg1cn 10001 . . . 4  |-  -u 1  e.  CC
2 ax-1cn 8983 . . . . 5  |-  1  e.  CC
3 ax-1ne0 8994 . . . . 5  |-  1  =/=  0
42, 3negne0i 9309 . . . 4  |-  -u 1  =/=  0
5 2re 10003 . . . . . 6  |-  2  e.  RR
6 3nn 10068 . . . . . 6  |-  3  e.  NN
7 nndivre 9969 . . . . . 6  |-  ( ( 2  e.  RR  /\  3  e.  NN )  ->  ( 2  /  3
)  e.  RR )
85, 6, 7mp2an 654 . . . . 5  |-  ( 2  /  3 )  e.  RR
98recni 9037 . . . 4  |-  ( 2  /  3 )  e.  CC
10 cxpef 20425 . . . 4  |-  ( (
-u 1  e.  CC  /\  -u 1  =/=  0  /\  ( 2  /  3
)  e.  CC )  ->  ( -u 1  ^ c  ( 2  /  3 ) )  =  ( exp `  (
( 2  /  3
)  x.  ( log `  -u 1 ) ) ) )
111, 4, 9, 10mp3an 1279 . . 3  |-  ( -u
1  ^ c  ( 2  /  3 ) )  =  ( exp `  ( ( 2  / 
3 )  x.  ( log `  -u 1 ) ) )
12 logm1 20352 . . . . . 6  |-  ( log `  -u 1 )  =  ( _i  x.  pi )
1312oveq2i 6033 . . . . 5  |-  ( ( 2  /  3 )  x.  ( log `  -u 1
) )  =  ( ( 2  /  3
)  x.  ( _i  x.  pi ) )
14 ax-icn 8984 . . . . . 6  |-  _i  e.  CC
15 pire 20241 . . . . . . 7  |-  pi  e.  RR
1615recni 9037 . . . . . 6  |-  pi  e.  CC
179, 14, 16mul12i 9195 . . . . 5  |-  ( ( 2  /  3 )  x.  ( _i  x.  pi ) )  =  ( _i  x.  ( ( 2  /  3 )  x.  pi ) )
1813, 17eqtri 2409 . . . 4  |-  ( ( 2  /  3 )  x.  ( log `  -u 1
) )  =  ( _i  x.  ( ( 2  /  3 )  x.  pi ) )
1918fveq2i 5673 . . 3  |-  ( exp `  ( ( 2  / 
3 )  x.  ( log `  -u 1 ) ) )  =  ( exp `  ( _i  x.  (
( 2  /  3
)  x.  pi ) ) )
20 6nn 10071 . . . . . . . . 9  |-  6  e.  NN
21 nndivre 9969 . . . . . . . . 9  |-  ( ( pi  e.  RR  /\  6  e.  NN )  ->  ( pi  /  6
)  e.  RR )
2215, 20, 21mp2an 654 . . . . . . . 8  |-  ( pi 
/  6 )  e.  RR
2322recni 9037 . . . . . . 7  |-  ( pi 
/  6 )  e.  CC
24 coshalfpip 20271 . . . . . . 7  |-  ( ( pi  /  6 )  e.  CC  ->  ( cos `  ( ( pi 
/  2 )  +  ( pi  /  6
) ) )  = 
-u ( sin `  (
pi  /  6 ) ) )
2523, 24ax-mp 8 . . . . . 6  |-  ( cos `  ( ( pi  / 
2 )  +  ( pi  /  6 ) ) )  =  -u ( sin `  ( pi 
/  6 ) )
26 2cn 10004 . . . . . . . . . 10  |-  2  e.  CC
27 2ne0 10017 . . . . . . . . . 10  |-  2  =/=  0
28 divrec2 9629 . . . . . . . . . 10  |-  ( ( pi  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
pi  /  2 )  =  ( ( 1  /  2 )  x.  pi ) )
2916, 26, 27, 28mp3an 1279 . . . . . . . . 9  |-  ( pi 
/  2 )  =  ( ( 1  / 
2 )  x.  pi )
3020nncni 9944 . . . . . . . . . 10  |-  6  e.  CC
3120nnne0i 9968 . . . . . . . . . 10  |-  6  =/=  0
32 divrec2 9629 . . . . . . . . . 10  |-  ( ( pi  e.  CC  /\  6  e.  CC  /\  6  =/=  0 )  ->  (
pi  /  6 )  =  ( ( 1  /  6 )  x.  pi ) )
3316, 30, 31, 32mp3an 1279 . . . . . . . . 9  |-  ( pi 
/  6 )  =  ( ( 1  / 
6 )  x.  pi )
3429, 33oveq12i 6034 . . . . . . . 8  |-  ( ( pi  /  2 )  +  ( pi  / 
6 ) )  =  ( ( ( 1  /  2 )  x.  pi )  +  ( ( 1  /  6
)  x.  pi ) )
3526, 27reccli 9678 . . . . . . . . 9  |-  ( 1  /  2 )  e.  CC
3630, 31reccli 9678 . . . . . . . . 9  |-  ( 1  /  6 )  e.  CC
3735, 36, 16adddiri 9036 . . . . . . . 8  |-  ( ( ( 1  /  2
)  +  ( 1  /  6 ) )  x.  pi )  =  ( ( ( 1  /  2 )  x.  pi )  +  ( ( 1  /  6
)  x.  pi ) )
38 halfpm6th 10126 . . . . . . . . . 10  |-  ( ( ( 1  /  2
)  -  ( 1  /  6 ) )  =  ( 1  / 
3 )  /\  (
( 1  /  2
)  +  ( 1  /  6 ) )  =  ( 2  / 
3 ) )
3938simpri 449 . . . . . . . . 9  |-  ( ( 1  /  2 )  +  ( 1  / 
6 ) )  =  ( 2  /  3
)
4039oveq1i 6032 . . . . . . . 8  |-  ( ( ( 1  /  2
)  +  ( 1  /  6 ) )  x.  pi )  =  ( ( 2  / 
3 )  x.  pi )
4134, 37, 403eqtr2i 2415 . . . . . . 7  |-  ( ( pi  /  2 )  +  ( pi  / 
6 ) )  =  ( ( 2  / 
3 )  x.  pi )
4241fveq2i 5673 . . . . . 6  |-  ( cos `  ( ( pi  / 
2 )  +  ( pi  /  6 ) ) )  =  ( cos `  ( ( 2  /  3 )  x.  pi ) )
43 sincos6thpi 20292 . . . . . . . . 9  |-  ( ( sin `  ( pi 
/  6 ) )  =  ( 1  / 
2 )  /\  ( cos `  ( pi  / 
6 ) )  =  ( ( sqr `  3
)  /  2 ) )
4443simpli 445 . . . . . . . 8  |-  ( sin `  ( pi  /  6
) )  =  ( 1  /  2 )
4544negeqi 9233 . . . . . . 7  |-  -u ( sin `  ( pi  / 
6 ) )  = 
-u ( 1  / 
2 )
46 divneg 9643 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  -u (
1  /  2 )  =  ( -u 1  /  2 ) )
472, 26, 27, 46mp3an 1279 . . . . . . 7  |-  -u (
1  /  2 )  =  ( -u 1  /  2 )
4845, 47eqtri 2409 . . . . . 6  |-  -u ( sin `  ( pi  / 
6 ) )  =  ( -u 1  / 
2 )
4925, 42, 483eqtr3i 2417 . . . . 5  |-  ( cos `  ( ( 2  / 
3 )  x.  pi ) )  =  (
-u 1  /  2
)
50 sinhalfpip 20269 . . . . . . . . 9  |-  ( ( pi  /  6 )  e.  CC  ->  ( sin `  ( ( pi 
/  2 )  +  ( pi  /  6
) ) )  =  ( cos `  (
pi  /  6 ) ) )
5123, 50ax-mp 8 . . . . . . . 8  |-  ( sin `  ( ( pi  / 
2 )  +  ( pi  /  6 ) ) )  =  ( cos `  ( pi 
/  6 ) )
5241fveq2i 5673 . . . . . . . 8  |-  ( sin `  ( ( pi  / 
2 )  +  ( pi  /  6 ) ) )  =  ( sin `  ( ( 2  /  3 )  x.  pi ) )
5343simpri 449 . . . . . . . 8  |-  ( cos `  ( pi  /  6
) )  =  ( ( sqr `  3
)  /  2 )
5451, 52, 533eqtr3i 2417 . . . . . . 7  |-  ( sin `  ( ( 2  / 
3 )  x.  pi ) )  =  ( ( sqr `  3
)  /  2 )
5554oveq2i 6033 . . . . . 6  |-  ( _i  x.  ( sin `  (
( 2  /  3
)  x.  pi ) ) )  =  ( _i  x.  ( ( sqr `  3 )  /  2 ) )
56 3re 10005 . . . . . . . . 9  |-  3  e.  RR
57 3nn0 10173 . . . . . . . . . 10  |-  3  e.  NN0
5857nn0ge0i 10183 . . . . . . . . 9  |-  0  <_  3
59 resqrcl 11988 . . . . . . . . 9  |-  ( ( 3  e.  RR  /\  0  <_  3 )  -> 
( sqr `  3
)  e.  RR )
6056, 58, 59mp2an 654 . . . . . . . 8  |-  ( sqr `  3 )  e.  RR
6160recni 9037 . . . . . . 7  |-  ( sqr `  3 )  e.  CC
6214, 61, 26, 27divassi 9704 . . . . . 6  |-  ( ( _i  x.  ( sqr `  3 ) )  /  2 )  =  ( _i  x.  (
( sqr `  3
)  /  2 ) )
6355, 62eqtr4i 2412 . . . . 5  |-  ( _i  x.  ( sin `  (
( 2  /  3
)  x.  pi ) ) )  =  ( ( _i  x.  ( sqr `  3 ) )  /  2 )
6449, 63oveq12i 6034 . . . 4  |-  ( ( cos `  ( ( 2  /  3 )  x.  pi ) )  +  ( _i  x.  ( sin `  ( ( 2  /  3 )  x.  pi ) ) ) )  =  ( ( -u 1  / 
2 )  +  ( ( _i  x.  ( sqr `  3 ) )  /  2 ) )
659, 16mulcli 9030 . . . . 5  |-  ( ( 2  /  3 )  x.  pi )  e.  CC
66 efival 12682 . . . . 5  |-  ( ( ( 2  /  3
)  x.  pi )  e.  CC  ->  ( exp `  ( _i  x.  ( ( 2  / 
3 )  x.  pi ) ) )  =  ( ( cos `  (
( 2  /  3
)  x.  pi ) )  +  ( _i  x.  ( sin `  (
( 2  /  3
)  x.  pi ) ) ) ) )
6765, 66ax-mp 8 . . . 4  |-  ( exp `  ( _i  x.  (
( 2  /  3
)  x.  pi ) ) )  =  ( ( cos `  (
( 2  /  3
)  x.  pi ) )  +  ( _i  x.  ( sin `  (
( 2  /  3
)  x.  pi ) ) ) )
6814, 61mulcli 9030 . . . . 5  |-  ( _i  x.  ( sqr `  3
) )  e.  CC
691, 68, 26, 27divdiri 9705 . . . 4  |-  ( (
-u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 )  =  ( ( -u
1  /  2 )  +  ( ( _i  x.  ( sqr `  3
) )  /  2
) )
7064, 67, 693eqtr4i 2419 . . 3  |-  ( exp `  ( _i  x.  (
( 2  /  3
)  x.  pi ) ) )  =  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 )
7111, 19, 703eqtri 2413 . 2  |-  ( -u
1  ^ c  ( 2  /  3 ) )  =  ( (
-u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 )
72 1z 10245 . . . 4  |-  1  e.  ZZ
73 root1cj 20509 . . . 4  |-  ( ( 3  e.  NN  /\  1  e.  ZZ )  ->  ( * `  (
( -u 1  ^ c 
( 2  /  3
) ) ^ 1 ) )  =  ( ( -u 1  ^ c  ( 2  / 
3 ) ) ^
( 3  -  1 ) ) )
746, 72, 73mp2an 654 . . 3  |-  ( * `
 ( ( -u
1  ^ c  ( 2  /  3 ) ) ^ 1 ) )  =  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ (
3  -  1 ) )
75 cxpcl 20434 . . . . . . . 8  |-  ( (
-u 1  e.  CC  /\  ( 2  /  3
)  e.  CC )  ->  ( -u 1  ^ c  ( 2  /  3 ) )  e.  CC )
761, 9, 75mp2an 654 . . . . . . 7  |-  ( -u
1  ^ c  ( 2  /  3 ) )  e.  CC
77 exp1 11316 . . . . . . 7  |-  ( (
-u 1  ^ c 
( 2  /  3
) )  e.  CC  ->  ( ( -u 1  ^ c  ( 2  /  3 ) ) ^ 1 )  =  ( -u 1  ^ c  ( 2  / 
3 ) ) )
7876, 77ax-mp 8 . . . . . 6  |-  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ 1 )  =  ( -u
1  ^ c  ( 2  /  3 ) )
7978, 71eqtri 2409 . . . . 5  |-  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ 1 )  =  ( (
-u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 )
8079fveq2i 5673 . . . 4  |-  ( * `
 ( ( -u
1  ^ c  ( 2  /  3 ) ) ^ 1 ) )  =  ( * `
 ( ( -u
1  +  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) )
811, 68addcli 9029 . . . . . 6  |-  ( -u
1  +  ( _i  x.  ( sqr `  3
) ) )  e.  CC
8281, 26cjdivi 11925 . . . . 5  |-  ( 2  =/=  0  ->  (
* `  ( ( -u 1  +  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) )  =  ( ( * `  ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) ) )  /  (
* `  2 )
) )
8327, 82ax-mp 8 . . . 4  |-  ( * `
 ( ( -u
1  +  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) )  =  ( ( * `  ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) ) )  /  (
* `  2 )
)
841, 68cjaddi 11922 . . . . . 6  |-  ( * `
 ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) ) )  =  ( ( * `  -u 1 )  +  ( * `  ( _i  x.  ( sqr `  3
) ) ) )
85 1re 9025 . . . . . . . . 9  |-  1  e.  RR
8685renegcli 9296 . . . . . . . 8  |-  -u 1  e.  RR
87 cjre 11873 . . . . . . . 8  |-  ( -u
1  e.  RR  ->  ( * `  -u 1
)  =  -u 1
)
8886, 87ax-mp 8 . . . . . . 7  |-  ( * `
 -u 1 )  = 
-u 1
8914, 61cjmuli 11923 . . . . . . . 8  |-  ( * `
 ( _i  x.  ( sqr `  3 ) ) )  =  ( ( * `  _i )  x.  ( * `  ( sqr `  3
) ) )
90 cji 11893 . . . . . . . . 9  |-  ( * `
 _i )  = 
-u _i
91 cjre 11873 . . . . . . . . . 10  |-  ( ( sqr `  3 )  e.  RR  ->  (
* `  ( sqr `  3 ) )  =  ( sqr `  3
) )
9260, 91ax-mp 8 . . . . . . . . 9  |-  ( * `
 ( sqr `  3
) )  =  ( sqr `  3 )
9390, 92oveq12i 6034 . . . . . . . 8  |-  ( ( * `  _i )  x.  ( * `  ( sqr `  3 ) ) )  =  (
-u _i  x.  ( sqr `  3 ) )
9414, 61mulneg1i 9413 . . . . . . . 8  |-  ( -u _i  x.  ( sqr `  3
) )  =  -u ( _i  x.  ( sqr `  3 ) )
9589, 93, 943eqtri 2413 . . . . . . 7  |-  ( * `
 ( _i  x.  ( sqr `  3 ) ) )  =  -u ( _i  x.  ( sqr `  3 ) )
9688, 95oveq12i 6034 . . . . . 6  |-  ( ( * `  -u 1
)  +  ( * `
 ( _i  x.  ( sqr `  3 ) ) ) )  =  ( -u 1  + 
-u ( _i  x.  ( sqr `  3 ) ) )
971, 68negsubi 9312 . . . . . 6  |-  ( -u
1  +  -u (
_i  x.  ( sqr `  3 ) ) )  =  ( -u 1  -  ( _i  x.  ( sqr `  3 ) ) )
9884, 96, 973eqtri 2413 . . . . 5  |-  ( * `
 ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) ) )  =  ( -u 1  -  ( _i  x.  ( sqr `  3 ) ) )
99 cjre 11873 . . . . . 6  |-  ( 2  e.  RR  ->  (
* `  2 )  =  2 )
1005, 99ax-mp 8 . . . . 5  |-  ( * `
 2 )  =  2
10198, 100oveq12i 6034 . . . 4  |-  ( ( * `  ( -u
1  +  ( _i  x.  ( sqr `  3
) ) ) )  /  ( * ` 
2 ) )  =  ( ( -u 1  -  ( _i  x.  ( sqr `  3 ) ) )  /  2
)
10280, 83, 1013eqtri 2413 . . 3  |-  ( * `
 ( ( -u
1  ^ c  ( 2  /  3 ) ) ^ 1 ) )  =  ( (
-u 1  -  (
_i  x.  ( sqr `  3 ) ) )  /  2 )
103 3m1e2 10030 . . . 4  |-  ( 3  -  1 )  =  2
104103oveq2i 6033 . . 3  |-  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ (
3  -  1 ) )  =  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ 2 )
10574, 102, 1043eqtr3ri 2418 . 2  |-  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ 2 )  =  ( (
-u 1  -  (
_i  x.  ( sqr `  3 ) ) )  /  2 )
10671, 105pm3.2i 442 1  |-  ( (
-u 1  ^ c 
( 2  /  3
) )  =  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 )  /\  ( ( -u
1  ^ c  ( 2  /  3 ) ) ^ 2 )  =  ( ( -u
1  -  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2552   class class class wbr 4155   ` cfv 5396  (class class class)co 6022   CCcc 8923   RRcr 8924   0cc0 8925   1c1 8926   _ici 8927    + caddc 8928    x. cmul 8930    <_ cle 9056    - cmin 9225   -ucneg 9226    / cdiv 9611   NNcn 9934   2c2 9983   3c3 9984   6c6 9987   ZZcz 10216   ^cexp 11311   *ccj 11830   sqrcsqr 11967   expce 12593   sincsin 12595   cosccos 12596   picpi 12598   logclog 20321    ^ c ccxp 20322
This theorem is referenced by:  1cubr  20551
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-inf2 7531  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002  ax-pre-sup 9003  ax-addf 9004  ax-mulf 9005
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-iin 4040  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-se 4485  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-isom 5405  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-of 6246  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-rdg 6606  df-1o 6662  df-2o 6663  df-oadd 6666  df-er 6843  df-map 6958  df-pm 6959  df-ixp 7002  df-en 7048  df-dom 7049  df-sdom 7050  df-fin 7051  df-fi 7353  df-sup 7383  df-oi 7414  df-card 7761  df-cda 7983  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-div 9612  df-nn 9935  df-2 9992  df-3 9993  df-4 9994  df-5 9995  df-6 9996  df-7 9997  df-8 9998  df-9 9999  df-10 10000  df-n0 10156  df-z 10217  df-dec 10317  df-uz 10423  df-q 10509  df-rp 10547  df-xneg 10644  df-xadd 10645  df-xmul 10646  df-ioo 10854  df-ioc 10855  df-ico 10856  df-icc 10857  df-fz 10978  df-fzo 11068  df-fl 11131  df-mod 11180  df-seq 11253  df-exp 11312  df-fac 11496  df-bc 11523  df-hash 11548  df-shft 11811  df-cj 11833  df-re 11834  df-im 11835  df-sqr 11969  df-abs 11970  df-limsup 12194  df-clim 12211  df-rlim 12212  df-sum 12409  df-ef 12599  df-sin 12601  df-cos 12602  df-pi 12604  df-struct 13400  df-ndx 13401  df-slot 13402  df-base 13403  df-sets 13404  df-ress 13405  df-plusg 13471  df-mulr 13472  df-starv 13473  df-sca 13474  df-vsca 13475  df-tset 13477  df-ple 13478  df-ds 13480  df-unif 13481  df-hom 13482  df-cco 13483  df-rest 13579  df-topn 13580  df-topgen 13596  df-pt 13597  df-prds 13600  df-xrs 13655  df-0g 13656  df-gsum 13657  df-qtop 13662  df-imas 13663  df-xps 13665  df-mre 13740  df-mrc 13741  df-acs 13743  df-mnd 14619  df-submnd 14668  df-mulg 14744  df-cntz 15045  df-cmn 15343  df-xmet 16621  df-met 16622  df-bl 16623  df-mopn 16624  df-fbas 16625  df-fg 16626  df-cnfld 16629  df-top 16888  df-bases 16890  df-topon 16891  df-topsp 16892  df-cld 17008  df-ntr 17009  df-cls 17010  df-nei 17087  df-lp 17125  df-perf 17126  df-cn 17215  df-cnp 17216  df-haus 17303  df-tx 17517  df-hmeo 17710  df-fil 17801  df-fm 17893  df-flim 17894  df-flf 17895  df-xms 18261  df-ms 18262  df-tms 18263  df-cncf 18781  df-limc 19622  df-dv 19623  df-log 20323  df-cxp 20324
  Copyright terms: Public domain W3C validator