Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cvrat Unicode version

Theorem 1cvrat 28795
Description: Create an atom under an element covered by the lattice unit. Part of proof of Lemma B in [Crawley] p. 112. (Contributed by NM, 30-Apr-2012.)
Hypotheses
Ref Expression
1cvrat.b  |-  B  =  ( Base `  K
)
1cvrat.l  |-  .<_  =  ( le `  K )
1cvrat.j  |-  .\/  =  ( join `  K )
1cvrat.m  |-  ./\  =  ( meet `  K )
1cvrat.u  |-  .1.  =  ( 1. `  K )
1cvrat.c  |-  C  =  (  <o  `  K )
1cvrat.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
1cvrat  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( ( P  .\/  Q )  ./\  X )  e.  A )

Proof of Theorem 1cvrat
StepHypRef Expression
1 hllat 28683 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
213ad2ant1 981 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  K  e.  Lat )
3 simp21 993 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  P  e.  A )
4 1cvrat.b . . . . . . 7  |-  B  =  ( Base `  K
)
5 1cvrat.a . . . . . . 7  |-  A  =  ( Atoms `  K )
64, 5atbase 28609 . . . . . 6  |-  ( P  e.  A  ->  P  e.  B )
73, 6syl 17 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  P  e.  B )
8 simp22 994 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  Q  e.  A )
94, 5atbase 28609 . . . . . 6  |-  ( Q  e.  A  ->  Q  e.  B )
108, 9syl 17 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  Q  e.  B )
11 1cvrat.j . . . . . 6  |-  .\/  =  ( join `  K )
124, 11latjcom 14092 . . . . 5  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  Q  e.  B )  ->  ( P  .\/  Q
)  =  ( Q 
.\/  P ) )
132, 7, 10, 12syl3anc 1187 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( P  .\/  Q
)  =  ( Q 
.\/  P ) )
1413oveq1d 5772 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( ( P  .\/  Q )  ./\  X )  =  ( ( Q 
.\/  P )  ./\  X ) )
154, 11latjcl 14083 . . . . 5  |-  ( ( K  e.  Lat  /\  Q  e.  B  /\  P  e.  B )  ->  ( Q  .\/  P
)  e.  B )
162, 10, 7, 15syl3anc 1187 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( Q  .\/  P
)  e.  B )
17 simp23 995 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  X  e.  B )
18 1cvrat.m . . . . 5  |-  ./\  =  ( meet `  K )
194, 18latmcom 14108 . . . 4  |-  ( ( K  e.  Lat  /\  ( Q  .\/  P )  e.  B  /\  X  e.  B )  ->  (
( Q  .\/  P
)  ./\  X )  =  ( X  ./\  ( Q  .\/  P ) ) )
202, 16, 17, 19syl3anc 1187 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( ( Q  .\/  P )  ./\  X )  =  ( X  ./\  ( Q  .\/  P ) ) )
2114, 20eqtrd 2288 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( ( P  .\/  Q )  ./\  X )  =  ( X  ./\  ( Q  .\/  P ) ) )
22 simp1 960 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  K  e.  HL )
2317, 8, 33jca 1137 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( X  e.  B  /\  Q  e.  A  /\  P  e.  A
) )
24 simp31 996 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  P  =/=  Q )
2524necomd 2502 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  Q  =/=  P )
26 simp33 998 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  -.  P  .<_  X )
27 hlop 28682 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OP )
28273ad2ant1 981 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  K  e.  OP )
29 1cvrat.l . . . . . 6  |-  .<_  =  ( le `  K )
30 1cvrat.u . . . . . 6  |-  .1.  =  ( 1. `  K )
314, 29, 30ople1 28511 . . . . 5  |-  ( ( K  e.  OP  /\  Q  e.  B )  ->  Q  .<_  .1.  )
3228, 10, 31syl2anc 645 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  Q  .<_  .1.  )
33 simp32 997 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  X C  .1.  )
34 1cvrat.c . . . . . 6  |-  C  =  (  <o  `  K )
354, 29, 11, 30, 34, 51cvrjat 28794 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  ( X  .\/  P )  =  .1.  )
3622, 17, 3, 33, 26, 35syl32anc 1195 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( X  .\/  P
)  =  .1.  )
3732, 36breqtrrd 3989 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  Q  .<_  ( X  .\/  P ) )
384, 29, 11, 18, 5cvrat3 28761 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  P  e.  A
) )  ->  (
( Q  =/=  P  /\  -.  P  .<_  X  /\  Q  .<_  ( X  .\/  P ) )  ->  ( X  ./\  ( Q  .\/  P ) )  e.  A
) )
3938imp 420 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  P  e.  A
) )  /\  ( Q  =/=  P  /\  -.  P  .<_  X  /\  Q  .<_  ( X  .\/  P
) ) )  -> 
( X  ./\  ( Q  .\/  P ) )  e.  A )
4022, 23, 25, 26, 37, 39syl23anc 1194 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( X  ./\  ( Q  .\/  P ) )  e.  A )
4121, 40eqeltrd 2330 1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( ( P  .\/  Q )  ./\  X )  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   class class class wbr 3963   ` cfv 4638  (class class class)co 5757   Basecbs 13075   lecple 13142   joincjn 14005   meetcmee 14006   1.cp1 14071   Latclat 14078   OPcops 28492    <o ccvr 28582   Atomscatm 28583   HLchlt 28670
This theorem is referenced by:  cdlemblem  29112  cdlemb  29113  lhpat  29362
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-undef 6229  df-riota 6237  df-poset 14007  df-plt 14019  df-lub 14035  df-glb 14036  df-join 14037  df-meet 14038  df-p0 14072  df-p1 14073  df-lat 14079  df-clat 14141  df-oposet 28496  df-ol 28498  df-oml 28499  df-covers 28586  df-ats 28587  df-atl 28618  df-cvlat 28642  df-hlat 28671
  Copyright terms: Public domain W3C validator