MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1exp Structured version   Unicode version

Theorem 1exp 11399
Description: Value of one raised to a nonnegative integer power. (Contributed by NM, 15-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
1exp  |-  ( N  e.  ZZ  ->  (
1 ^ N )  =  1 )

Proof of Theorem 1exp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1ex 9076 . . . 4  |-  1  e.  _V
21snid 3833 . . 3  |-  1  e.  { 1 }
3 ax-1ne0 9049 . . 3  |-  1  =/=  0
4 ax-1cn 9038 . . . . 5  |-  1  e.  CC
5 snssi 3934 . . . . 5  |-  ( 1  e.  CC  ->  { 1 }  C_  CC )
64, 5ax-mp 8 . . . 4  |-  { 1 }  C_  CC
7 elsni 3830 . . . . . 6  |-  ( x  e.  { 1 }  ->  x  =  1 )
8 elsni 3830 . . . . . 6  |-  ( y  e.  { 1 }  ->  y  =  1 )
9 oveq12 6082 . . . . . . 7  |-  ( ( x  =  1  /\  y  =  1 )  ->  ( x  x.  y )  =  ( 1  x.  1 ) )
10 1t1e1 10116 . . . . . . 7  |-  ( 1  x.  1 )  =  1
119, 10syl6eq 2483 . . . . . 6  |-  ( ( x  =  1  /\  y  =  1 )  ->  ( x  x.  y )  =  1 )
127, 8, 11syl2an 464 . . . . 5  |-  ( ( x  e.  { 1 }  /\  y  e. 
{ 1 } )  ->  ( x  x.  y )  =  1 )
13 ovex 6098 . . . . . 6  |-  ( x  x.  y )  e. 
_V
1413elsnc 3829 . . . . 5  |-  ( ( x  x.  y )  e.  { 1 }  <-> 
( x  x.  y
)  =  1 )
1512, 14sylibr 204 . . . 4  |-  ( ( x  e.  { 1 }  /\  y  e. 
{ 1 } )  ->  ( x  x.  y )  e.  {
1 } )
167oveq2d 6089 . . . . . . 7  |-  ( x  e.  { 1 }  ->  ( 1  /  x )  =  ( 1  /  1 ) )
174div1i 9732 . . . . . . 7  |-  ( 1  /  1 )  =  1
1816, 17syl6eq 2483 . . . . . 6  |-  ( x  e.  { 1 }  ->  ( 1  /  x )  =  1 )
19 ovex 6098 . . . . . . 7  |-  ( 1  /  x )  e. 
_V
2019elsnc 3829 . . . . . 6  |-  ( ( 1  /  x )  e.  { 1 }  <-> 
( 1  /  x
)  =  1 )
2118, 20sylibr 204 . . . . 5  |-  ( x  e.  { 1 }  ->  ( 1  /  x )  e.  {
1 } )
2221adantr 452 . . . 4  |-  ( ( x  e.  { 1 }  /\  x  =/=  0 )  ->  (
1  /  x )  e.  { 1 } )
236, 15, 2, 22expcl2lem 11383 . . 3  |-  ( ( 1  e.  { 1 }  /\  1  =/=  0  /\  N  e.  ZZ )  ->  (
1 ^ N )  e.  { 1 } )
242, 3, 23mp3an12 1269 . 2  |-  ( N  e.  ZZ  ->  (
1 ^ N )  e.  { 1 } )
25 elsni 3830 . 2  |-  ( ( 1 ^ N )  e.  { 1 }  ->  ( 1 ^ N )  =  1 )
2624, 25syl 16 1  |-  ( N  e.  ZZ  ->  (
1 ^ N )  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598    C_ wss 3312   {csn 3806  (class class class)co 6073   CCcc 8978   0cc0 8980   1c1 8981    x. cmul 8985    / cdiv 9667   ZZcz 10272   ^cexp 11372
This theorem is referenced by:  exprec  11411  sq1  11466  iexpcyc  11475  faclbnd4lem1  11574  iseraltlem2  12466  iseraltlem3  12467  binom1p  12600  binom11  12601  esum  12673  ege2le3  12682  eirrlem  12793  odzdvds  13171  iblabsr  19711  iblmulc2  19712  abelthlem1  20337  abelthlem3  20339  abelthlem8  20345  abelthlem9  20346  ef2kpi  20376  root1cj  20630  cxpeq  20631  quart  20691  leibpi  20772  log2cnv  20774  mule1  20921  lgseisenlem1  21123  lgseisenlem4  21126  lgseisen  21127  lgsquadlem1  21128  lgsquad2lem1  21132  m1lgs  21136  dchrisum0flblem1  21192  subfaclim  24864  iblmulc2nc  26233  expdioph  27048  lhe4.4ex1a  27478  stoweidlem7  27687  stirlinglem5  27758  stirlinglem7  27760  stirlinglem10  27763
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9036  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284  df-div 9668  df-nn 9991  df-n0 10212  df-z 10273  df-uz 10479  df-seq 11314  df-exp 11373
  Copyright terms: Public domain W3C validator