MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1idssfct Unicode version

Theorem 1idssfct 13013
Description: The positive divisors of a positive integer include 1 and itself. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
1idssfct  |-  ( N  e.  NN  ->  { 1 ,  N }  C_  { n  e.  NN  |  n  ||  N } )
Distinct variable group:    n, N

Proof of Theorem 1idssfct
StepHypRef Expression
1 1nn 9944 . . 3  |-  1  e.  NN
2 nnz 10236 . . . 4  |-  ( N  e.  NN  ->  N  e.  ZZ )
3 1dvds 12792 . . . 4  |-  ( N  e.  ZZ  ->  1  ||  N )
42, 3syl 16 . . 3  |-  ( N  e.  NN  ->  1  ||  N )
5 breq1 4157 . . . . 5  |-  ( n  =  1  ->  (
n  ||  N  <->  1  ||  N ) )
65elrab 3036 . . . 4  |-  ( 1  e.  { n  e.  NN  |  n  ||  N }  <->  ( 1  e.  NN  /\  1  ||  N ) )
76biimpri 198 . . 3  |-  ( ( 1  e.  NN  /\  1  ||  N )  -> 
1  e.  { n  e.  NN  |  n  ||  N } )
81, 4, 7sylancr 645 . 2  |-  ( N  e.  NN  ->  1  e.  { n  e.  NN  |  n  ||  N }
)
9 iddvds 12791 . . . 4  |-  ( N  e.  ZZ  ->  N  ||  N )
102, 9syl 16 . . 3  |-  ( N  e.  NN  ->  N  ||  N )
11 breq1 4157 . . . . 5  |-  ( n  =  N  ->  (
n  ||  N  <->  N  ||  N
) )
1211elrab 3036 . . . 4  |-  ( N  e.  { n  e.  NN  |  n  ||  N }  <->  ( N  e.  NN  /\  N  ||  N ) )
1312biimpri 198 . . 3  |-  ( ( N  e.  NN  /\  N  ||  N )  ->  N  e.  { n  e.  NN  |  n  ||  N } )
1410, 13mpdan 650 . 2  |-  ( N  e.  NN  ->  N  e.  { n  e.  NN  |  n  ||  N }
)
15 prssi 3898 . 2  |-  ( ( 1  e.  { n  e.  NN  |  n  ||  N }  /\  N  e. 
{ n  e.  NN  |  n  ||  N }
)  ->  { 1 ,  N }  C_  { n  e.  NN  |  n  ||  N } )
168, 14, 15syl2anc 643 1  |-  ( N  e.  NN  ->  { 1 ,  N }  C_  { n  e.  NN  |  n  ||  N } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1717   {crab 2654    C_ wss 3264   {cpr 3759   class class class wbr 4154   1c1 8925   NNcn 9933   ZZcz 10215    || cdivides 12780
This theorem is referenced by:  isprm2lem  13014  isprm2  13015
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-riota 6486  df-recs 6570  df-rdg 6605  df-er 6842  df-en 7047  df-dom 7048  df-sdom 7049  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-nn 9934  df-z 10216  df-dvds 12781
  Copyright terms: Public domain W3C validator