MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1lt7 Unicode version

Theorem 1lt7 10087
Description: 1 is less than 7. (Contributed by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
1lt7  |-  1  <  7

Proof of Theorem 1lt7
StepHypRef Expression
1 1lt2 10067 . 2  |-  1  <  2
2 2lt7 10086 . 2  |-  2  <  7
3 1re 9016 . . 3  |-  1  e.  RR
4 2re 9994 . . 3  |-  2  e.  RR
5 7re 10002 . . 3  |-  7  e.  RR
63, 4, 5lttri 9124 . 2  |-  ( ( 1  <  2  /\  2  <  7 )  ->  1  <  7
)
71, 2, 6mp2an 654 1  |-  1  <  7
Colors of variables: wff set class
Syntax hints:   class class class wbr 4146   1c1 8917    < clt 9046   2c2 9974   7c7 9979
This theorem is referenced by:  7prm  13353  prmlem2  13362  43prm  13364  317prm  13368  631prm  13369
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-po 4437  df-so 4438  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-riota 6478  df-er 6834  df-en 7039  df-dom 7040  df-sdom 7041  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-2 9983  df-3 9984  df-4 9985  df-5 9986  df-6 9987  df-7 9988
  Copyright terms: Public domain W3C validator