MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stcelcls Structured version   Unicode version

Theorem 1stcelcls 17562
Description: A point belongs to the closure of a subset iff there is a sequence in the subset converging to it. Theorem 1.4-6(a) of [Kreyszig] p. 30. This proof uses countable choice ax-cc 8353. A space satisfying the conclusion of this theorem is called a sequential space, so the theorem can also be stated as "every first-countable space is a sequential space". (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypothesis
Ref Expression
1stcelcls.1  |-  X  = 
U. J
Assertion
Ref Expression
1stcelcls  |-  ( ( J  e.  1stc  /\  S  C_  X )  ->  ( P  e.  ( ( cls `  J ) `  S )  <->  E. f
( f : NN --> S  /\  f ( ~~> t `  J ) P ) ) )
Distinct variable groups:    f, J    P, f    S, f    f, X

Proof of Theorem 1stcelcls
Dummy variables  g 
j  k  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 732 . . . . 5  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  J  e.  1stc )
2 1stctop 17544 . . . . . . 7  |-  ( J  e.  1stc  ->  J  e. 
Top )
3 1stcelcls.1 . . . . . . . 8  |-  X  = 
U. J
43clsss3 17161 . . . . . . 7  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  C_  X )
52, 4sylan 459 . . . . . 6  |-  ( ( J  e.  1stc  /\  S  C_  X )  ->  (
( cls `  J
) `  S )  C_  X )
65sselda 3337 . . . . 5  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  P  e.  X )
731stcfb 17546 . . . . 5  |-  ( ( J  e.  1stc  /\  P  e.  X )  ->  E. g
( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k
)  /\  ( g `  ( k  +  1 ) )  C_  (
g `  k )
)  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k )  C_  x
) ) )
81, 6, 7syl2anc 644 . . . 4  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  E. g
( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k
)  /\  ( g `  ( k  +  1 ) )  C_  (
g `  k )
)  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k )  C_  x
) ) )
9 simpr1 964 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  g : NN --> J )
109ffvelrnda 5906 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  (
g `  n )  e.  J )
113elcls2 17176 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( P  e.  ( ( cls `  J
) `  S )  <->  ( P  e.  X  /\  A. y  e.  J  ( P  e.  y  -> 
( y  i^i  S
)  =/=  (/) ) ) ) )
122, 11sylan 459 . . . . . . . . . . . 12  |-  ( ( J  e.  1stc  /\  S  C_  X )  ->  ( P  e.  ( ( cls `  J ) `  S )  <->  ( P  e.  X  /\  A. y  e.  J  ( P  e.  y  ->  ( y  i^i  S )  =/=  (/) ) ) ) )
1312simplbda 609 . . . . . . . . . . 11  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  A. y  e.  J  ( P  e.  y  ->  ( y  i^i  S )  =/=  (/) ) )
1413ad2antrr 708 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  A. y  e.  J  ( P  e.  y  ->  ( y  i^i  S )  =/=  (/) ) )
15 simpr2 965 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  A. k  e.  NN  ( P  e.  ( g `  k
)  /\  ( g `  ( k  +  1 ) )  C_  (
g `  k )
) )
16 simpl 445 . . . . . . . . . . . . 13  |-  ( ( P  e.  ( g `
 k )  /\  ( g `  (
k  +  1 ) )  C_  ( g `  k ) )  ->  P  e.  ( g `  k ) )
1716ralimi 2788 . . . . . . . . . . . 12  |-  ( A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  ->  A. k  e.  NN  P  e.  ( g `  k ) )
1815, 17syl 16 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  A. k  e.  NN  P  e.  ( g `  k ) )
19 fveq2 5763 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  (
g `  k )  =  ( g `  n ) )
2019eleq2d 2510 . . . . . . . . . . . 12  |-  ( k  =  n  ->  ( P  e.  ( g `  k )  <->  P  e.  ( g `  n
) ) )
2120rspccva 3060 . . . . . . . . . . 11  |-  ( ( A. k  e.  NN  P  e.  ( g `  k )  /\  n  e.  NN )  ->  P  e.  ( g `  n
) )
2218, 21sylan 459 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  P  e.  ( g `  n
) )
23 eleq2 2504 . . . . . . . . . . . 12  |-  ( y  =  ( g `  n )  ->  ( P  e.  y  <->  P  e.  ( g `  n
) ) )
24 ineq1 3524 . . . . . . . . . . . . 13  |-  ( y  =  ( g `  n )  ->  (
y  i^i  S )  =  ( ( g `
 n )  i^i 
S ) )
2524neeq1d 2621 . . . . . . . . . . . 12  |-  ( y  =  ( g `  n )  ->  (
( y  i^i  S
)  =/=  (/)  <->  ( (
g `  n )  i^i  S )  =/=  (/) ) )
2623, 25imbi12d 313 . . . . . . . . . . 11  |-  ( y  =  ( g `  n )  ->  (
( P  e.  y  ->  ( y  i^i 
S )  =/=  (/) )  <->  ( P  e.  ( g `  n
)  ->  ( (
g `  n )  i^i  S )  =/=  (/) ) ) )
2726rspcv 3057 . . . . . . . . . 10  |-  ( ( g `  n )  e.  J  ->  ( A. y  e.  J  ( P  e.  y  ->  ( y  i^i  S
)  =/=  (/) )  -> 
( P  e.  ( g `  n )  ->  ( ( g `
 n )  i^i 
S )  =/=  (/) ) ) )
2810, 14, 22, 27syl3c 60 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  (
( g `  n
)  i^i  S )  =/=  (/) )
29 elin 3519 . . . . . . . . . . . 12  |-  ( x  e.  ( ( g `
 n )  i^i 
S )  <->  ( x  e.  ( g `  n
)  /\  x  e.  S ) )
30 ancom 439 . . . . . . . . . . . 12  |-  ( ( x  e.  ( g `
 n )  /\  x  e.  S )  <->  ( x  e.  S  /\  x  e.  ( g `  n ) ) )
3129, 30bitri 242 . . . . . . . . . . 11  |-  ( x  e.  ( ( g `
 n )  i^i 
S )  <->  ( x  e.  S  /\  x  e.  ( g `  n
) ) )
3231exbii 1593 . . . . . . . . . 10  |-  ( E. x  x  e.  ( ( g `  n
)  i^i  S )  <->  E. x ( x  e.  S  /\  x  e.  ( g `  n
) ) )
33 n0 3625 . . . . . . . . . 10  |-  ( ( ( g `  n
)  i^i  S )  =/=  (/)  <->  E. x  x  e.  ( ( g `  n )  i^i  S
) )
34 df-rex 2718 . . . . . . . . . 10  |-  ( E. x  e.  S  x  e.  ( g `  n )  <->  E. x
( x  e.  S  /\  x  e.  (
g `  n )
) )
3532, 33, 343bitr4i 270 . . . . . . . . 9  |-  ( ( ( g `  n
)  i^i  S )  =/=  (/)  <->  E. x  e.  S  x  e.  ( g `  n ) )
3628, 35sylib 190 . . . . . . . 8  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  E. x  e.  S  x  e.  ( g `  n
) )
372ad2antrr 708 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  J  e.  Top )
383topopn 17017 . . . . . . . . . . . . 13  |-  ( J  e.  Top  ->  X  e.  J )
3937, 38syl 16 . . . . . . . . . . . 12  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  X  e.  J )
40 simplr 733 . . . . . . . . . . . 12  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  S  C_  X
)
4139, 40ssexd 4385 . . . . . . . . . . 11  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  S  e.  _V )
42 fvi 5819 . . . . . . . . . . 11  |-  ( S  e.  _V  ->  (  _I  `  S )  =  S )
4341, 42syl 16 . . . . . . . . . 10  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  (  _I  `  S )  =  S )
4443ad2antrr 708 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  (  _I  `  S )  =  S )
4544rexeqdv 2918 . . . . . . . 8  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  ( E. x  e.  (  _I  `  S ) x  e.  ( g `  n )  <->  E. x  e.  S  x  e.  ( g `  n
) ) )
4636, 45mpbird 225 . . . . . . 7  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  E. x  e.  (  _I  `  S
) x  e.  ( g `  n ) )
4746ralrimiva 2796 . . . . . 6  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  A. n  e.  NN  E. x  e.  (  _I  `  S
) x  e.  ( g `  n ) )
48 fvex 5773 . . . . . . 7  |-  (  _I 
`  S )  e. 
_V
49 nnenom 11357 . . . . . . 7  |-  NN  ~~  om
50 eleq1 2503 . . . . . . 7  |-  ( x  =  ( f `  n )  ->  (
x  e.  ( g `
 n )  <->  ( f `  n )  e.  ( g `  n ) ) )
5148, 49, 50axcc4 8357 . . . . . 6  |-  ( A. n  e.  NN  E. x  e.  (  _I  `  S
) x  e.  ( g `  n )  ->  E. f ( f : NN --> (  _I 
`  S )  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )
5247, 51syl 16 . . . . 5  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  E. f
( f : NN --> (  _I  `  S )  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) ) )
53 feq3 5613 . . . . . . . . . 10  |-  ( (  _I  `  S )  =  S  ->  (
f : NN --> (  _I 
`  S )  <->  f : NN
--> S ) )
5443, 53syl 16 . . . . . . . . 9  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  ( f : NN --> (  _I  `  S )  <->  f : NN
--> S ) )
5554biimpd 200 . . . . . . . 8  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  ( f : NN --> (  _I  `  S )  ->  f : NN --> S ) )
5655adantr 453 . . . . . . 7  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  (
f : NN --> (  _I 
`  S )  -> 
f : NN --> S ) )
576ad2antrr 708 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  ->  P  e.  X )
58 simplr3 1002 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  ->  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
)
59 eleq2 2504 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  ( P  e.  x  <->  P  e.  y ) )
60 fveq2 5763 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  j  ->  (
g `  k )  =  ( g `  j ) )
6160sseq1d 3364 . . . . . . . . . . . . . . . . 17  |-  ( k  =  j  ->  (
( g `  k
)  C_  x  <->  ( g `  j )  C_  x
) )
6261cbvrexv 2942 . . . . . . . . . . . . . . . 16  |-  ( E. k  e.  NN  (
g `  k )  C_  x  <->  E. j  e.  NN  ( g `  j
)  C_  x )
63 sseq2 3359 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  (
( g `  j
)  C_  x  <->  ( g `  j )  C_  y
) )
6463rexbidv 2733 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  ( E. j  e.  NN  ( g `  j
)  C_  x  <->  E. j  e.  NN  ( g `  j )  C_  y
) )
6562, 64syl5bb 250 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  ( E. k  e.  NN  ( g `  k
)  C_  x  <->  E. j  e.  NN  ( g `  j )  C_  y
) )
6659, 65imbi12d 313 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  (
( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )  <->  ( P  e.  y  ->  E. j  e.  NN  ( g `  j
)  C_  y )
) )
6766rspccva 3060 . . . . . . . . . . . . 13  |-  ( ( A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )  /\  y  e.  J
)  ->  ( P  e.  y  ->  E. j  e.  NN  ( g `  j )  C_  y
) )
6858, 67sylan 459 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  /\  y  e.  J )  ->  ( P  e.  y  ->  E. j  e.  NN  ( g `  j
)  C_  y )
)
69 simpr 449 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( P  e.  ( g `
 k )  /\  ( g `  (
k  +  1 ) )  C_  ( g `  k ) )  -> 
( g `  (
k  +  1 ) )  C_  ( g `  k ) )
7069ralimi 2788 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  ->  A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k ) )
7115, 70syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )
)
7271adantr 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  ->  A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k ) )
73 simprrr 743 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  ->  j  e.  NN )
74 fveq2 5763 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  =  j  ->  (
g `  n )  =  ( g `  j ) )
7574sseq1d 3364 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  =  j  ->  (
( g `  n
)  C_  ( g `  j )  <->  ( g `  j )  C_  (
g `  j )
) )
7675imbi2d 309 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  =  j  ->  (
( ( A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )  /\  j  e.  NN )  ->  ( g `  n )  C_  (
g `  j )
)  <->  ( ( A. k  e.  NN  (
g `  ( k  +  1 ) ) 
C_  ( g `  k )  /\  j  e.  NN )  ->  (
g `  j )  C_  ( g `  j
) ) ) )
77 fveq2 5763 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  =  m  ->  (
g `  n )  =  ( g `  m ) )
7877sseq1d 3364 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  =  m  ->  (
( g `  n
)  C_  ( g `  j )  <->  ( g `  m )  C_  (
g `  j )
) )
7978imbi2d 309 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  =  m  ->  (
( ( A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )  /\  j  e.  NN )  ->  ( g `  n )  C_  (
g `  j )
)  <->  ( ( A. k  e.  NN  (
g `  ( k  +  1 ) ) 
C_  ( g `  k )  /\  j  e.  NN )  ->  (
g `  m )  C_  ( g `  j
) ) ) )
80 fveq2 5763 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  =  ( m  + 
1 )  ->  (
g `  n )  =  ( g `  ( m  +  1
) ) )
8180sseq1d 3364 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  =  ( m  + 
1 )  ->  (
( g `  n
)  C_  ( g `  j )  <->  ( g `  ( m  +  1 ) )  C_  (
g `  j )
) )
8281imbi2d 309 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  =  ( m  + 
1 )  ->  (
( ( A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )  /\  j  e.  NN )  ->  ( g `  n )  C_  (
g `  j )
)  <->  ( ( A. k  e.  NN  (
g `  ( k  +  1 ) ) 
C_  ( g `  k )  /\  j  e.  NN )  ->  (
g `  ( m  +  1 ) ) 
C_  ( g `  j ) ) ) )
83 ssid 3356 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( g `
 j )  C_  ( g `  j
)
8483a1ii 26 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( j  e.  ZZ  ->  (
( A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )  /\  j  e.  NN )  ->  ( g `  j )  C_  (
g `  j )
) )
85 nnuz 10559 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  NN  =  ( ZZ>= `  1 )
8685uztrn2 10541 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( j  e.  NN  /\  m  e.  ( ZZ>= `  j ) )  ->  m  e.  NN )
87 oveq1 6124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( k  =  m  ->  (
k  +  1 )  =  ( m  + 
1 ) )
8887fveq2d 5767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( k  =  m  ->  (
g `  ( k  +  1 ) )  =  ( g `  ( m  +  1
) ) )
89 fveq2 5763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( k  =  m  ->  (
g `  k )  =  ( g `  m ) )
9088, 89sseq12d 3366 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( k  =  m  ->  (
( g `  (
k  +  1 ) )  C_  ( g `  k )  <->  ( g `  ( m  +  1 ) )  C_  (
g `  m )
) )
9190rspccva 3060 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k )  /\  m  e.  NN )  ->  (
g `  ( m  +  1 ) ) 
C_  ( g `  m ) )
9286, 91sylan2 462 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k )  /\  (
j  e.  NN  /\  m  e.  ( ZZ>= `  j ) ) )  ->  ( g `  ( m  +  1
) )  C_  (
g `  m )
)
9392anassrs 631 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )  /\  j  e.  NN )  /\  m  e.  (
ZZ>= `  j ) )  ->  ( g `  ( m  +  1
) )  C_  (
g `  m )
)
94 sstr2 3344 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( g `  ( m  +  1 ) ) 
C_  ( g `  m )  ->  (
( g `  m
)  C_  ( g `  j )  ->  (
g `  ( m  +  1 ) ) 
C_  ( g `  j ) ) )
9593, 94syl 16 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )  /\  j  e.  NN )  /\  m  e.  (
ZZ>= `  j ) )  ->  ( ( g `
 m )  C_  ( g `  j
)  ->  ( g `  ( m  +  1 ) )  C_  (
g `  j )
) )
9695expcom 426 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( m  e.  ( ZZ>= `  j
)  ->  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k )  /\  j  e.  NN )  ->  (
( g `  m
)  C_  ( g `  j )  ->  (
g `  ( m  +  1 ) ) 
C_  ( g `  j ) ) ) )
9796a2d 25 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  e.  ( ZZ>= `  j
)  ->  ( (
( A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )  /\  j  e.  NN )  ->  ( g `  m )  C_  (
g `  j )
)  ->  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k )  /\  j  e.  NN )  ->  (
g `  ( m  +  1 ) ) 
C_  ( g `  j ) ) ) )
9876, 79, 82, 79, 84, 97uzind4 10572 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  e.  ( ZZ>= `  j
)  ->  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k )  /\  j  e.  NN )  ->  (
g `  m )  C_  ( g `  j
) ) )
9998com12 30 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k )  /\  j  e.  NN )  ->  (
m  e.  ( ZZ>= `  j )  ->  (
g `  m )  C_  ( g `  j
) ) )
10099ralrimiv 2795 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k )  /\  j  e.  NN )  ->  A. m  e.  ( ZZ>= `  j )
( g `  m
)  C_  ( g `  j ) )
10172, 73, 100syl2anc 644 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  ->  A. m  e.  (
ZZ>= `  j ) ( g `  m ) 
C_  ( g `  j ) )
10273, 86sylan 459 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  /\  m  e.  (
ZZ>= `  j ) )  ->  m  e.  NN )
103 simplr 733 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) )  ->  A. n  e.  NN  ( f `  n
)  e.  ( g `
 n ) )
104103ad2antlr 709 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  /\  m  e.  (
ZZ>= `  j ) )  ->  A. n  e.  NN  ( f `  n
)  e.  ( g `
 n ) )
105 fveq2 5763 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  =  m  ->  (
f `  n )  =  ( f `  m ) )
106105, 77eleq12d 2511 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  =  m  ->  (
( f `  n
)  e.  ( g `
 n )  <->  ( f `  m )  e.  ( g `  m ) ) )
107106rspcv 3057 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  NN  ->  ( A. n  e.  NN  ( f `  n
)  e.  ( g `
 n )  -> 
( f `  m
)  e.  ( g `
 m ) ) )
108102, 104, 107sylc 59 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  /\  m  e.  (
ZZ>= `  j ) )  ->  ( f `  m )  e.  ( g `  m ) )
109108ralrimiva 2796 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  ->  A. m  e.  (
ZZ>= `  j ) ( f `  m )  e.  ( g `  m ) )
110 r19.26 2845 . . . . . . . . . . . . . . . . . 18  |-  ( A. m  e.  ( ZZ>= `  j ) ( ( g `  m ) 
C_  ( g `  j )  /\  (
f `  m )  e.  ( g `  m
) )  <->  ( A. m  e.  ( ZZ>= `  j ) ( g `
 m )  C_  ( g `  j
)  /\  A. m  e.  ( ZZ>= `  j )
( f `  m
)  e.  ( g `
 m ) ) )
111101, 109, 110sylanbrc 647 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  ->  A. m  e.  (
ZZ>= `  j ) ( ( g `  m
)  C_  ( g `  j )  /\  (
f `  m )  e.  ( g `  m
) ) )
112 ssel2 3332 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( g `  m
)  C_  ( g `  j )  /\  (
f `  m )  e.  ( g `  m
) )  ->  (
f `  m )  e.  ( g `  j
) )
113112ralimi 2788 . . . . . . . . . . . . . . . . 17  |-  ( A. m  e.  ( ZZ>= `  j ) ( ( g `  m ) 
C_  ( g `  j )  /\  (
f `  m )  e.  ( g `  m
) )  ->  A. m  e.  ( ZZ>= `  j )
( f `  m
)  e.  ( g `
 j ) )
114111, 113syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  ->  A. m  e.  (
ZZ>= `  j ) ( f `  m )  e.  ( g `  j ) )
115 ssel 3331 . . . . . . . . . . . . . . . . 17  |-  ( ( g `  j ) 
C_  y  ->  (
( f `  m
)  e.  ( g `
 j )  -> 
( f `  m
)  e.  y ) )
116115ralimdv 2792 . . . . . . . . . . . . . . . 16  |-  ( ( g `  j ) 
C_  y  ->  ( A. m  e.  ( ZZ>=
`  j ) ( f `  m )  e.  ( g `  j )  ->  A. m  e.  ( ZZ>= `  j )
( f `  m
)  e.  y ) )
117114, 116syl5com 29 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  ->  ( ( g `
 j )  C_  y  ->  A. m  e.  (
ZZ>= `  j ) ( f `  m )  e.  y ) )
118117anassrs 631 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  /\  ( y  e.  J  /\  j  e.  NN ) )  ->  (
( g `  j
)  C_  y  ->  A. m  e.  ( ZZ>= `  j ) ( f `
 m )  e.  y ) )
119118anassrs 631 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  /\  y  e.  J )  /\  j  e.  NN )  ->  ( ( g `
 j )  C_  y  ->  A. m  e.  (
ZZ>= `  j ) ( f `  m )  e.  y ) )
120119reximdva 2825 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  /\  y  e.  J )  ->  ( E. j  e.  NN  ( g `  j )  C_  y  ->  E. j  e.  NN  A. m  e.  ( ZZ>= `  j ) ( f `
 m )  e.  y ) )
12168, 120syld 43 . . . . . . . . . . 11  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  /\  y  e.  J )  ->  ( P  e.  y  ->  E. j  e.  NN  A. m  e.  ( ZZ>= `  j ) ( f `
 m )  e.  y ) )
122121ralrimiva 2796 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  ->  A. y  e.  J  ( P  e.  y  ->  E. j  e.  NN  A. m  e.  ( ZZ>= `  j ) ( f `
 m )  e.  y ) )
12337ad2antrr 708 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  ->  J  e.  Top )
1243toptopon 17036 . . . . . . . . . . . 12  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
125123, 124sylib 190 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  ->  J  e.  (TopOn `  X
) )
126 1z 10349 . . . . . . . . . . . 12  |-  1  e.  ZZ
127126a1i 11 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  -> 
1  e.  ZZ )
128 simprl 734 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  -> 
f : NN --> S )
12940ad2antrr 708 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  ->  S  C_  X )
130 fss 5634 . . . . . . . . . . . 12  |-  ( ( f : NN --> S  /\  S  C_  X )  -> 
f : NN --> X )
131128, 129, 130syl2anc 644 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  -> 
f : NN --> X )
132 eqidd 2444 . . . . . . . . . . 11  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  /\  m  e.  NN )  ->  ( f `  m
)  =  ( f `
 m ) )
133125, 85, 127, 131, 132lmbrf 17362 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  -> 
( f ( ~~> t `  J ) P  <->  ( P  e.  X  /\  A. y  e.  J  ( P  e.  y  ->  E. j  e.  NN  A. m  e.  ( ZZ>= `  j )
( f `  m
)  e.  y ) ) ) )
13457, 122, 133mpbir2and 890 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  -> 
f ( ~~> t `  J ) P )
135134expr 600 . . . . . . . 8  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  f : NN --> S )  -> 
( A. n  e.  NN  ( f `  n )  e.  ( g `  n )  ->  f ( ~~> t `  J ) P ) )
136135imdistanda 676 . . . . . . 7  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  ->  ( f : NN --> S  /\  f
( ~~> t `  J
) P ) ) )
13756, 136syland 469 . . . . . 6  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  (
( f : NN --> (  _I  `  S )  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  ->  ( f : NN --> S  /\  f
( ~~> t `  J
) P ) ) )
138137eximdv 1634 . . . . 5  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  ( E. f ( f : NN --> (  _I  `  S )  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) )  ->  E. f
( f : NN --> S  /\  f ( ~~> t `  J ) P ) ) )
13952, 138mpd 15 . . . 4  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  E. f
( f : NN --> S  /\  f ( ~~> t `  J ) P ) )
1408, 139exlimddv 1650 . . 3  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  E. f
( f : NN --> S  /\  f ( ~~> t `  J ) P ) )
141140ex 425 . 2  |-  ( ( J  e.  1stc  /\  S  C_  X )  ->  ( P  e.  ( ( cls `  J ) `  S )  ->  E. f
( f : NN --> S  /\  f ( ~~> t `  J ) P ) ) )
1422ad2antrr 708 . . . . . 6  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  ( f : NN --> S  /\  f ( ~~> t `  J ) P ) )  ->  J  e.  Top )
143142, 124sylib 190 . . . . 5  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  ( f : NN --> S  /\  f ( ~~> t `  J ) P ) )  ->  J  e.  (TopOn `  X ) )
144126a1i 11 . . . . 5  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  ( f : NN --> S  /\  f ( ~~> t `  J ) P ) )  ->  1  e.  ZZ )
145 simprr 735 . . . . 5  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  ( f : NN --> S  /\  f ( ~~> t `  J ) P ) )  ->  f ( ~~> t `  J ) P )
146 simprl 734 . . . . . 6  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  ( f : NN --> S  /\  f ( ~~> t `  J ) P ) )  ->  f : NN
--> S )
147146ffvelrnda 5906 . . . . 5  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  ( f : NN --> S  /\  f
( ~~> t `  J
) P ) )  /\  k  e.  NN )  ->  ( f `  k )  e.  S
)
148 simplr 733 . . . . 5  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  ( f : NN --> S  /\  f ( ~~> t `  J ) P ) )  ->  S  C_  X
)
14985, 143, 144, 145, 147, 148lmcls 17404 . . . 4  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  ( f : NN --> S  /\  f ( ~~> t `  J ) P ) )  ->  P  e.  ( ( cls `  J
) `  S )
)
150149ex 425 . . 3  |-  ( ( J  e.  1stc  /\  S  C_  X )  ->  (
( f : NN --> S  /\  f ( ~~> t `  J ) P )  ->  P  e.  ( ( cls `  J
) `  S )
) )
151150exlimdv 1648 . 2  |-  ( ( J  e.  1stc  /\  S  C_  X )  ->  ( E. f ( f : NN --> S  /\  f
( ~~> t `  J
) P )  ->  P  e.  ( ( cls `  J ) `  S ) ) )
152141, 151impbid 185 1  |-  ( ( J  e.  1stc  /\  S  C_  X )  ->  ( P  e.  ( ( cls `  J ) `  S )  <->  E. f
( f : NN --> S  /\  f ( ~~> t `  J ) P ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937   E.wex 1551    = wceq 1654    e. wcel 1728    =/= wne 2606   A.wral 2712   E.wrex 2713   _Vcvv 2965    i^i cin 3308    C_ wss 3309   (/)c0 3616   U.cuni 4044   class class class wbr 4243    _I cid 4528   -->wf 5485   ` cfv 5489  (class class class)co 6117   1c1 9029    + caddc 9031   NNcn 10038   ZZcz 10320   ZZ>=cuz 10526   Topctop 16996  TopOnctopon 16997   clsccl 17120   ~~> tclm 17328   1stcc1stc 17538
This theorem is referenced by:  1stccnp  17563  hausmapdom  17601  1stckgen  17624  metelcls  19295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-13 1730  ax-14 1732  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424  ax-rep 4351  ax-sep 4361  ax-nul 4369  ax-pow 4412  ax-pr 4438  ax-un 4736  ax-inf2 7632  ax-cc 8353  ax-cnex 9084  ax-resscn 9085  ax-1cn 9086  ax-icn 9087  ax-addcl 9088  ax-addrcl 9089  ax-mulcl 9090  ax-mulrcl 9091  ax-mulcom 9092  ax-addass 9093  ax-mulass 9094  ax-distr 9095  ax-i2m1 9096  ax-1ne0 9097  ax-1rid 9098  ax-rnegex 9099  ax-rrecex 9100  ax-cnre 9101  ax-pre-lttri 9102  ax-pre-lttrn 9103  ax-pre-ltadd 9104  ax-pre-mulgt0 9105
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-eu 2292  df-mo 2293  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2717  df-rex 2718  df-reu 2719  df-rab 2721  df-v 2967  df-sbc 3171  df-csb 3271  df-dif 3312  df-un 3314  df-in 3316  df-ss 3323  df-pss 3325  df-nul 3617  df-if 3768  df-pw 3830  df-sn 3849  df-pr 3850  df-tp 3851  df-op 3852  df-uni 4045  df-int 4080  df-iun 4124  df-iin 4125  df-br 4244  df-opab 4298  df-mpt 4299  df-tr 4334  df-eprel 4529  df-id 4533  df-po 4538  df-so 4539  df-fr 4576  df-we 4578  df-ord 4619  df-on 4620  df-lim 4621  df-suc 4622  df-om 4881  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5453  df-fun 5491  df-fn 5492  df-f 5493  df-f1 5494  df-fo 5495  df-f1o 5496  df-fv 5497  df-ov 6120  df-oprab 6121  df-mpt2 6122  df-1st 6385  df-2nd 6386  df-riota 6585  df-recs 6669  df-rdg 6704  df-1o 6760  df-oadd 6764  df-er 6941  df-pm 7057  df-en 7146  df-dom 7147  df-sdom 7148  df-fin 7149  df-pnf 9160  df-mnf 9161  df-xr 9162  df-ltxr 9163  df-le 9164  df-sub 9331  df-neg 9332  df-nn 10039  df-n0 10260  df-z 10321  df-uz 10527  df-fz 11082  df-top 17001  df-topon 17004  df-cld 17121  df-ntr 17122  df-cls 17123  df-lm 17331  df-1stc 17540
  Copyright terms: Public domain W3C validator