MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stcrest Structured version   Unicode version

Theorem 1stcrest 17521
Description: A subspace of a first-countable space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
1stcrest  |-  ( ( J  e.  1stc  /\  A  e.  V )  ->  ( Jt  A )  e.  1stc )

Proof of Theorem 1stcrest
Dummy variables  t 
a  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stctop 17511 . . 3  |-  ( J  e.  1stc  ->  J  e. 
Top )
2 resttop 17229 . . 3  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( Jt  A )  e.  Top )
31, 2sylan 459 . 2  |-  ( ( J  e.  1stc  /\  A  e.  V )  ->  ( Jt  A )  e.  Top )
4 eqid 2438 . . . . . . . 8  |-  U. J  =  U. J
54restuni2 17236 . . . . . . 7  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( A  i^i  U. J )  =  U. ( Jt  A ) )
61, 5sylan 459 . . . . . 6  |-  ( ( J  e.  1stc  /\  A  e.  V )  ->  ( A  i^i  U. J )  =  U. ( Jt  A ) )
76eleq2d 2505 . . . . 5  |-  ( ( J  e.  1stc  /\  A  e.  V )  ->  (
x  e.  ( A  i^i  U. J )  <-> 
x  e.  U. ( Jt  A ) ) )
87biimpar 473 . . . 4  |-  ( ( ( J  e.  1stc  /\  A  e.  V )  /\  x  e.  U. ( Jt  A ) )  ->  x  e.  ( A  i^i  U. J ) )
9 simpl 445 . . . . . 6  |-  ( ( J  e.  1stc  /\  A  e.  V )  ->  J  e.  1stc )
10 inss2 3564 . . . . . . 7  |-  ( A  i^i  U. J ) 
C_  U. J
1110sseli 3346 . . . . . 6  |-  ( x  e.  ( A  i^i  U. J )  ->  x  e.  U. J )
1241stcclb 17512 . . . . . 6  |-  ( ( J  e.  1stc  /\  x  e.  U. J )  ->  E. t  e.  ~P  J ( t  ~<_  om 
/\  A. a  e.  J  ( x  e.  a  ->  E. y  e.  t  ( x  e.  y  /\  y  C_  a
) ) ) )
139, 11, 12syl2an 465 . . . . 5  |-  ( ( ( J  e.  1stc  /\  A  e.  V )  /\  x  e.  ( A  i^i  U. J
) )  ->  E. t  e.  ~P  J ( t  ~<_  om  /\  A. a  e.  J  ( x  e.  a  ->  E. y  e.  t  ( x  e.  y  /\  y  C_  a ) ) ) )
14 simplll 736 . . . . . . . 8  |-  ( ( ( ( J  e. 
1stc  /\  A  e.  V
)  /\  x  e.  ( A  i^i  U. J
) )  /\  (
t  e.  ~P J  /\  ( t  ~<_  om  /\  A. a  e.  J  ( x  e.  a  ->  E. y  e.  t 
( x  e.  y  /\  y  C_  a
) ) ) ) )  ->  J  e.  1stc )
15 elpwi 3809 . . . . . . . . 9  |-  ( t  e.  ~P J  -> 
t  C_  J )
1615ad2antrl 710 . . . . . . . 8  |-  ( ( ( ( J  e. 
1stc  /\  A  e.  V
)  /\  x  e.  ( A  i^i  U. J
) )  /\  (
t  e.  ~P J  /\  ( t  ~<_  om  /\  A. a  e.  J  ( x  e.  a  ->  E. y  e.  t 
( x  e.  y  /\  y  C_  a
) ) ) ) )  ->  t  C_  J )
17 ssrest 17245 . . . . . . . 8  |-  ( ( J  e.  1stc  /\  t  C_  J )  ->  (
tt 
A )  C_  ( Jt  A ) )
1814, 16, 17syl2anc 644 . . . . . . 7  |-  ( ( ( ( J  e. 
1stc  /\  A  e.  V
)  /\  x  e.  ( A  i^i  U. J
) )  /\  (
t  e.  ~P J  /\  ( t  ~<_  om  /\  A. a  e.  J  ( x  e.  a  ->  E. y  e.  t 
( x  e.  y  /\  y  C_  a
) ) ) ) )  ->  ( tt  A
)  C_  ( Jt  A
) )
19 ovex 6109 . . . . . . . 8  |-  ( Jt  A )  e.  _V
2019elpw2 4367 . . . . . . 7  |-  ( ( tt  A )  e.  ~P ( Jt  A )  <->  ( tt  A
)  C_  ( Jt  A
) )
2118, 20sylibr 205 . . . . . 6  |-  ( ( ( ( J  e. 
1stc  /\  A  e.  V
)  /\  x  e.  ( A  i^i  U. J
) )  /\  (
t  e.  ~P J  /\  ( t  ~<_  om  /\  A. a  e.  J  ( x  e.  a  ->  E. y  e.  t 
( x  e.  y  /\  y  C_  a
) ) ) ) )  ->  ( tt  A
)  e.  ~P ( Jt  A ) )
22 vex 2961 . . . . . . . 8  |-  t  e. 
_V
23 simpllr 737 . . . . . . . 8  |-  ( ( ( ( J  e. 
1stc  /\  A  e.  V
)  /\  x  e.  ( A  i^i  U. J
) )  /\  (
t  e.  ~P J  /\  ( t  ~<_  om  /\  A. a  e.  J  ( x  e.  a  ->  E. y  e.  t 
( x  e.  y  /\  y  C_  a
) ) ) ) )  ->  A  e.  V )
24 restval 13659 . . . . . . . 8  |-  ( ( t  e.  _V  /\  A  e.  V )  ->  ( tt  A )  =  ran  ( v  e.  t 
|->  ( v  i^i  A
) ) )
2522, 23, 24sylancr 646 . . . . . . 7  |-  ( ( ( ( J  e. 
1stc  /\  A  e.  V
)  /\  x  e.  ( A  i^i  U. J
) )  /\  (
t  e.  ~P J  /\  ( t  ~<_  om  /\  A. a  e.  J  ( x  e.  a  ->  E. y  e.  t 
( x  e.  y  /\  y  C_  a
) ) ) ) )  ->  ( tt  A
)  =  ran  (
v  e.  t  |->  ( v  i^i  A ) ) )
26 simprrl 742 . . . . . . . 8  |-  ( ( ( ( J  e. 
1stc  /\  A  e.  V
)  /\  x  e.  ( A  i^i  U. J
) )  /\  (
t  e.  ~P J  /\  ( t  ~<_  om  /\  A. a  e.  J  ( x  e.  a  ->  E. y  e.  t 
( x  e.  y  /\  y  C_  a
) ) ) ) )  ->  t  ~<_  om )
27 1stcrestlem 17520 . . . . . . . 8  |-  ( t  ~<_  om  ->  ran  ( v  e.  t  |->  ( v  i^i  A ) )  ~<_  om )
2826, 27syl 16 . . . . . . 7  |-  ( ( ( ( J  e. 
1stc  /\  A  e.  V
)  /\  x  e.  ( A  i^i  U. J
) )  /\  (
t  e.  ~P J  /\  ( t  ~<_  om  /\  A. a  e.  J  ( x  e.  a  ->  E. y  e.  t 
( x  e.  y  /\  y  C_  a
) ) ) ) )  ->  ran  ( v  e.  t  |->  ( v  i^i  A ) )  ~<_  om )
2925, 28eqbrtrd 4235 . . . . . 6  |-  ( ( ( ( J  e. 
1stc  /\  A  e.  V
)  /\  x  e.  ( A  i^i  U. J
) )  /\  (
t  e.  ~P J  /\  ( t  ~<_  om  /\  A. a  e.  J  ( x  e.  a  ->  E. y  e.  t 
( x  e.  y  /\  y  C_  a
) ) ) ) )  ->  ( tt  A
)  ~<_  om )
301ad3antrrr 712 . . . . . . . . 9  |-  ( ( ( ( J  e. 
1stc  /\  A  e.  V
)  /\  x  e.  ( A  i^i  U. J
) )  /\  (
t  e.  ~P J  /\  ( t  ~<_  om  /\  A. a  e.  J  ( x  e.  a  ->  E. y  e.  t 
( x  e.  y  /\  y  C_  a
) ) ) ) )  ->  J  e.  Top )
31 elrest 13660 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( z  e.  ( Jt  A )  <->  E. a  e.  J  z  =  ( a  i^i  A
) ) )
3230, 23, 31syl2anc 644 . . . . . . . 8  |-  ( ( ( ( J  e. 
1stc  /\  A  e.  V
)  /\  x  e.  ( A  i^i  U. J
) )  /\  (
t  e.  ~P J  /\  ( t  ~<_  om  /\  A. a  e.  J  ( x  e.  a  ->  E. y  e.  t 
( x  e.  y  /\  y  C_  a
) ) ) ) )  ->  ( z  e.  ( Jt  A )  <->  E. a  e.  J  z  =  ( a  i^i  A
) ) )
33 r19.29 2848 . . . . . . . . . . . 12  |-  ( ( A. a  e.  J  ( x  e.  a  ->  E. y  e.  t  ( x  e.  y  /\  y  C_  a
) )  /\  E. a  e.  J  z  =  ( a  i^i 
A ) )  ->  E. a  e.  J  ( ( x  e.  a  ->  E. y  e.  t  ( x  e.  y  /\  y  C_  a ) )  /\  z  =  ( a  i^i  A ) ) )
34 simprr 735 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( J  e.  1stc  /\  A  e.  V )  /\  x  e.  ( A  i^i  U. J ) )  /\  t  e.  ~P J
)  /\  ( a  e.  J  /\  x  e.  A ) )  ->  x  e.  A )
3534a1d 24 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( J  e.  1stc  /\  A  e.  V )  /\  x  e.  ( A  i^i  U. J ) )  /\  t  e.  ~P J
)  /\  ( a  e.  J  /\  x  e.  A ) )  -> 
( x  e.  y  ->  x  e.  A
) )
3635ancld 538 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( J  e.  1stc  /\  A  e.  V )  /\  x  e.  ( A  i^i  U. J ) )  /\  t  e.  ~P J
)  /\  ( a  e.  J  /\  x  e.  A ) )  -> 
( x  e.  y  ->  ( x  e.  y  /\  x  e.  A ) ) )
37 elin 3532 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  ( y  i^i 
A )  <->  ( x  e.  y  /\  x  e.  A ) )
3836, 37syl6ibr 220 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( J  e.  1stc  /\  A  e.  V )  /\  x  e.  ( A  i^i  U. J ) )  /\  t  e.  ~P J
)  /\  ( a  e.  J  /\  x  e.  A ) )  -> 
( x  e.  y  ->  x  e.  ( y  i^i  A ) ) )
39 ssrin 3568 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y 
C_  a  ->  (
y  i^i  A )  C_  ( a  i^i  A
) )
4039a1i 11 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( J  e.  1stc  /\  A  e.  V )  /\  x  e.  ( A  i^i  U. J ) )  /\  t  e.  ~P J
)  /\  ( a  e.  J  /\  x  e.  A ) )  -> 
( y  C_  a  ->  ( y  i^i  A
)  C_  ( a  i^i  A ) ) )
4138, 40anim12d 548 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( J  e.  1stc  /\  A  e.  V )  /\  x  e.  ( A  i^i  U. J ) )  /\  t  e.  ~P J
)  /\  ( a  e.  J  /\  x  e.  A ) )  -> 
( ( x  e.  y  /\  y  C_  a )  ->  (
x  e.  ( y  i^i  A )  /\  ( y  i^i  A
)  C_  ( a  i^i  A ) ) ) )
4241reximdv 2819 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( J  e.  1stc  /\  A  e.  V )  /\  x  e.  ( A  i^i  U. J ) )  /\  t  e.  ~P J
)  /\  ( a  e.  J  /\  x  e.  A ) )  -> 
( E. y  e.  t  ( x  e.  y  /\  y  C_  a )  ->  E. y  e.  t  ( x  e.  ( y  i^i  A
)  /\  ( y  i^i  A )  C_  (
a  i^i  A )
) ) )
43 vex 2961 . . . . . . . . . . . . . . . . . . . . . . 23  |-  y  e. 
_V
4443inex1 4347 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  i^i  A )  e. 
_V
4544a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( J  e.  1stc  /\  A  e.  V )  /\  x  e.  ( A  i^i  U. J ) )  /\  t  e.  ~P J
)  /\  ( a  e.  J  /\  x  e.  A ) )  /\  y  e.  t )  ->  ( y  i^i  A
)  e.  _V )
46 simp-4r 745 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( J  e.  1stc  /\  A  e.  V )  /\  x  e.  ( A  i^i  U. J ) )  /\  t  e.  ~P J
)  /\  ( a  e.  J  /\  x  e.  A ) )  ->  A  e.  V )
47 elrest 13660 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( t  e.  _V  /\  A  e.  V )  ->  ( w  e.  ( tt  A )  <->  E. y  e.  t  w  =  ( y  i^i  A
) ) )
4822, 46, 47sylancr 646 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( J  e.  1stc  /\  A  e.  V )  /\  x  e.  ( A  i^i  U. J ) )  /\  t  e.  ~P J
)  /\  ( a  e.  J  /\  x  e.  A ) )  -> 
( w  e.  ( tt  A )  <->  E. y  e.  t  w  =  ( y  i^i  A
) ) )
49 eleq2 2499 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  =  ( y  i^i 
A )  ->  (
x  e.  w  <->  x  e.  ( y  i^i  A
) ) )
50 sseq1 3371 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  =  ( y  i^i 
A )  ->  (
w  C_  ( a  i^i  A )  <->  ( y  i^i  A )  C_  (
a  i^i  A )
) )
5149, 50anbi12d 693 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  =  ( y  i^i 
A )  ->  (
( x  e.  w  /\  w  C_  ( a  i^i  A ) )  <-> 
( x  e.  ( y  i^i  A )  /\  ( y  i^i 
A )  C_  (
a  i^i  A )
) ) )
5251adantl 454 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( J  e.  1stc  /\  A  e.  V )  /\  x  e.  ( A  i^i  U. J ) )  /\  t  e.  ~P J
)  /\  ( a  e.  J  /\  x  e.  A ) )  /\  w  =  ( y  i^i  A ) )  -> 
( ( x  e.  w  /\  w  C_  ( a  i^i  A
) )  <->  ( x  e.  ( y  i^i  A
)  /\  ( y  i^i  A )  C_  (
a  i^i  A )
) ) )
5345, 48, 52rexxfr2d 4743 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( J  e.  1stc  /\  A  e.  V )  /\  x  e.  ( A  i^i  U. J ) )  /\  t  e.  ~P J
)  /\  ( a  e.  J  /\  x  e.  A ) )  -> 
( E. w  e.  ( tt  A ) ( x  e.  w  /\  w  C_  ( a  i^i  A
) )  <->  E. y  e.  t  ( x  e.  ( y  i^i  A
)  /\  ( y  i^i  A )  C_  (
a  i^i  A )
) ) )
5442, 53sylibrd 227 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( J  e.  1stc  /\  A  e.  V )  /\  x  e.  ( A  i^i  U. J ) )  /\  t  e.  ~P J
)  /\  ( a  e.  J  /\  x  e.  A ) )  -> 
( E. y  e.  t  ( x  e.  y  /\  y  C_  a )  ->  E. w  e.  ( tt  A ) ( x  e.  w  /\  w  C_  ( a  i^i  A
) ) ) )
5554expr 600 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( J  e.  1stc  /\  A  e.  V )  /\  x  e.  ( A  i^i  U. J ) )  /\  t  e.  ~P J
)  /\  a  e.  J )  ->  (
x  e.  A  -> 
( E. y  e.  t  ( x  e.  y  /\  y  C_  a )  ->  E. w  e.  ( tt  A ) ( x  e.  w  /\  w  C_  ( a  i^i  A
) ) ) ) )
5655com23 75 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( J  e.  1stc  /\  A  e.  V )  /\  x  e.  ( A  i^i  U. J ) )  /\  t  e.  ~P J
)  /\  a  e.  J )  ->  ( E. y  e.  t 
( x  e.  y  /\  y  C_  a
)  ->  ( x  e.  A  ->  E. w  e.  ( tt  A ) ( x  e.  w  /\  w  C_  ( a  i^i  A
) ) ) ) )
5756imim2d 51 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( J  e.  1stc  /\  A  e.  V )  /\  x  e.  ( A  i^i  U. J ) )  /\  t  e.  ~P J
)  /\  a  e.  J )  ->  (
( x  e.  a  ->  E. y  e.  t  ( x  e.  y  /\  y  C_  a
) )  ->  (
x  e.  a  -> 
( x  e.  A  ->  E. w  e.  ( tt  A ) ( x  e.  w  /\  w  C_  ( a  i^i  A
) ) ) ) ) )
5857imp4b 575 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( J  e.  1stc  /\  A  e.  V )  /\  x  e.  ( A  i^i  U. J ) )  /\  t  e.  ~P J
)  /\  a  e.  J )  /\  (
x  e.  a  ->  E. y  e.  t 
( x  e.  y  /\  y  C_  a
) ) )  -> 
( ( x  e.  a  /\  x  e.  A )  ->  E. w  e.  ( tt  A ) ( x  e.  w  /\  w  C_  ( a  i^i  A
) ) ) )
59 eleq2 2499 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( a  i^i 
A )  ->  (
x  e.  z  <->  x  e.  ( a  i^i  A
) ) )
60 elin 3532 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( a  i^i 
A )  <->  ( x  e.  a  /\  x  e.  A ) )
6159, 60syl6bb 254 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( a  i^i 
A )  ->  (
x  e.  z  <->  ( x  e.  a  /\  x  e.  A ) ) )
62 sseq2 3372 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( a  i^i 
A )  ->  (
w  C_  z  <->  w  C_  (
a  i^i  A )
) )
6362anbi2d 686 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( a  i^i 
A )  ->  (
( x  e.  w  /\  w  C_  z )  <-> 
( x  e.  w  /\  w  C_  ( a  i^i  A ) ) ) )
6463rexbidv 2728 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( a  i^i 
A )  ->  ( E. w  e.  (
tt 
A ) ( x  e.  w  /\  w  C_  z )  <->  E. w  e.  ( tt  A ) ( x  e.  w  /\  w  C_  ( a  i^i  A
) ) ) )
6561, 64imbi12d 313 . . . . . . . . . . . . . . 15  |-  ( z  =  ( a  i^i 
A )  ->  (
( x  e.  z  ->  E. w  e.  ( tt  A ) ( x  e.  w  /\  w  C_  z ) )  <->  ( (
x  e.  a  /\  x  e.  A )  ->  E. w  e.  ( tt  A ) ( x  e.  w  /\  w  C_  ( a  i^i  A
) ) ) ) )
6658, 65syl5ibrcom 215 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( J  e.  1stc  /\  A  e.  V )  /\  x  e.  ( A  i^i  U. J ) )  /\  t  e.  ~P J
)  /\  a  e.  J )  /\  (
x  e.  a  ->  E. y  e.  t 
( x  e.  y  /\  y  C_  a
) ) )  -> 
( z  =  ( a  i^i  A )  ->  ( x  e.  z  ->  E. w  e.  ( tt  A ) ( x  e.  w  /\  w  C_  z ) ) ) )
6766expimpd 588 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  1stc  /\  A  e.  V )  /\  x  e.  ( A  i^i  U. J ) )  /\  t  e.  ~P J
)  /\  a  e.  J )  ->  (
( ( x  e.  a  ->  E. y  e.  t  ( x  e.  y  /\  y  C_  a ) )  /\  z  =  ( a  i^i  A ) )  -> 
( x  e.  z  ->  E. w  e.  ( tt  A ) ( x  e.  w  /\  w  C_  z ) ) ) )
6867rexlimdva 2832 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
1stc  /\  A  e.  V
)  /\  x  e.  ( A  i^i  U. J
) )  /\  t  e.  ~P J )  -> 
( E. a  e.  J  ( ( x  e.  a  ->  E. y  e.  t  ( x  e.  y  /\  y  C_  a ) )  /\  z  =  ( a  i^i  A ) )  -> 
( x  e.  z  ->  E. w  e.  ( tt  A ) ( x  e.  w  /\  w  C_  z ) ) ) )
6933, 68syl5 31 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
1stc  /\  A  e.  V
)  /\  x  e.  ( A  i^i  U. J
) )  /\  t  e.  ~P J )  -> 
( ( A. a  e.  J  ( x  e.  a  ->  E. y  e.  t  ( x  e.  y  /\  y  C_  a ) )  /\  E. a  e.  J  z  =  ( a  i^i 
A ) )  -> 
( x  e.  z  ->  E. w  e.  ( tt  A ) ( x  e.  w  /\  w  C_  z ) ) ) )
7069exp3a 427 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
1stc  /\  A  e.  V
)  /\  x  e.  ( A  i^i  U. J
) )  /\  t  e.  ~P J )  -> 
( A. a  e.  J  ( x  e.  a  ->  E. y  e.  t  ( x  e.  y  /\  y  C_  a ) )  -> 
( E. a  e.  J  z  =  ( a  i^i  A )  ->  ( x  e.  z  ->  E. w  e.  ( tt  A ) ( x  e.  w  /\  w  C_  z ) ) ) ) )
7170impr 604 . . . . . . . . 9  |-  ( ( ( ( J  e. 
1stc  /\  A  e.  V
)  /\  x  e.  ( A  i^i  U. J
) )  /\  (
t  e.  ~P J  /\  A. a  e.  J  ( x  e.  a  ->  E. y  e.  t  ( x  e.  y  /\  y  C_  a
) ) ) )  ->  ( E. a  e.  J  z  =  ( a  i^i  A
)  ->  ( x  e.  z  ->  E. w  e.  ( tt  A ) ( x  e.  w  /\  w  C_  z ) ) ) )
7271adantrrl 706 . . . . . . . 8  |-  ( ( ( ( J  e. 
1stc  /\  A  e.  V
)  /\  x  e.  ( A  i^i  U. J
) )  /\  (
t  e.  ~P J  /\  ( t  ~<_  om  /\  A. a  e.  J  ( x  e.  a  ->  E. y  e.  t 
( x  e.  y  /\  y  C_  a
) ) ) ) )  ->  ( E. a  e.  J  z  =  ( a  i^i 
A )  ->  (
x  e.  z  ->  E. w  e.  (
tt 
A ) ( x  e.  w  /\  w  C_  z ) ) ) )
7332, 72sylbid 208 . . . . . . 7  |-  ( ( ( ( J  e. 
1stc  /\  A  e.  V
)  /\  x  e.  ( A  i^i  U. J
) )  /\  (
t  e.  ~P J  /\  ( t  ~<_  om  /\  A. a  e.  J  ( x  e.  a  ->  E. y  e.  t 
( x  e.  y  /\  y  C_  a
) ) ) ) )  ->  ( z  e.  ( Jt  A )  ->  (
x  e.  z  ->  E. w  e.  (
tt 
A ) ( x  e.  w  /\  w  C_  z ) ) ) )
7473ralrimiv 2790 . . . . . 6  |-  ( ( ( ( J  e. 
1stc  /\  A  e.  V
)  /\  x  e.  ( A  i^i  U. J
) )  /\  (
t  e.  ~P J  /\  ( t  ~<_  om  /\  A. a  e.  J  ( x  e.  a  ->  E. y  e.  t 
( x  e.  y  /\  y  C_  a
) ) ) ) )  ->  A. z  e.  ( Jt  A ) ( x  e.  z  ->  E. w  e.  ( tt  A ) ( x  e.  w  /\  w  C_  z ) ) )
75 breq1 4218 . . . . . . . 8  |-  ( y  =  ( tt  A )  ->  ( y  ~<_  om  <->  ( tt  A )  ~<_  om )
)
76 rexeq 2907 . . . . . . . . . 10  |-  ( y  =  ( tt  A )  ->  ( E. w  e.  y  ( x  e.  w  /\  w  C_  z )  <->  E. w  e.  ( tt  A ) ( x  e.  w  /\  w  C_  z ) ) )
7776imbi2d 309 . . . . . . . . 9  |-  ( y  =  ( tt  A )  ->  ( ( x  e.  z  ->  E. w  e.  y  ( x  e.  w  /\  w  C_  z ) )  <->  ( x  e.  z  ->  E. w  e.  ( tt  A ) ( x  e.  w  /\  w  C_  z ) ) ) )
7877ralbidv 2727 . . . . . . . 8  |-  ( y  =  ( tt  A )  ->  ( A. z  e.  ( Jt  A ) ( x  e.  z  ->  E. w  e.  y  ( x  e.  w  /\  w  C_  z ) )  <->  A. z  e.  ( Jt  A ) ( x  e.  z  ->  E. w  e.  ( tt  A ) ( x  e.  w  /\  w  C_  z ) ) ) )
7975, 78anbi12d 693 . . . . . . 7  |-  ( y  =  ( tt  A )  ->  ( ( y  ~<_  om  /\  A. z  e.  ( Jt  A ) ( x  e.  z  ->  E. w  e.  y  ( x  e.  w  /\  w  C_  z ) ) )  <-> 
( ( tt  A )  ~<_  om  /\  A. z  e.  ( Jt  A ) ( x  e.  z  ->  E. w  e.  ( tt  A ) ( x  e.  w  /\  w  C_  z ) ) ) ) )
8079rspcev 3054 . . . . . 6  |-  ( ( ( tt  A )  e.  ~P ( Jt  A )  /\  (
( tt  A )  ~<_  om  /\  A. z  e.  ( Jt  A ) ( x  e.  z  ->  E. w  e.  ( tt  A ) ( x  e.  w  /\  w  C_  z ) ) ) )  ->  E. y  e.  ~P  ( Jt  A ) ( y  ~<_  om  /\  A. z  e.  ( Jt  A ) ( x  e.  z  ->  E. w  e.  y  ( x  e.  w  /\  w  C_  z ) ) ) )
8121, 29, 74, 80syl12anc 1183 . . . . 5  |-  ( ( ( ( J  e. 
1stc  /\  A  e.  V
)  /\  x  e.  ( A  i^i  U. J
) )  /\  (
t  e.  ~P J  /\  ( t  ~<_  om  /\  A. a  e.  J  ( x  e.  a  ->  E. y  e.  t 
( x  e.  y  /\  y  C_  a
) ) ) ) )  ->  E. y  e.  ~P  ( Jt  A ) ( y  ~<_  om  /\  A. z  e.  ( Jt  A ) ( x  e.  z  ->  E. w  e.  y  ( x  e.  w  /\  w  C_  z ) ) ) )
8213, 81rexlimddv 2836 . . . 4  |-  ( ( ( J  e.  1stc  /\  A  e.  V )  /\  x  e.  ( A  i^i  U. J
) )  ->  E. y  e.  ~P  ( Jt  A ) ( y  ~<_  om  /\  A. z  e.  ( Jt  A ) ( x  e.  z  ->  E. w  e.  y  ( x  e.  w  /\  w  C_  z ) ) ) )
838, 82syldan 458 . . 3  |-  ( ( ( J  e.  1stc  /\  A  e.  V )  /\  x  e.  U. ( Jt  A ) )  ->  E. y  e.  ~P  ( Jt  A ) ( y  ~<_  om  /\  A. z  e.  ( Jt  A ) ( x  e.  z  ->  E. w  e.  y  ( x  e.  w  /\  w  C_  z ) ) ) )
8483ralrimiva 2791 . 2  |-  ( ( J  e.  1stc  /\  A  e.  V )  ->  A. x  e.  U. ( Jt  A ) E. y  e.  ~P  ( Jt  A ) ( y  ~<_  om  /\  A. z  e.  ( Jt  A ) ( x  e.  z  ->  E. w  e.  y  ( x  e.  w  /\  w  C_  z ) ) ) )
85 eqid 2438 . . 3  |-  U. ( Jt  A )  =  U. ( Jt  A )
8685is1stc2 17510 . 2  |-  ( ( Jt  A )  e.  1stc  <->  (
( Jt  A )  e.  Top  /\ 
A. x  e.  U. ( Jt  A ) E. y  e.  ~P  ( Jt  A ) ( y  ~<_  om  /\  A. z  e.  ( Jt  A ) ( x  e.  z  ->  E. w  e.  y  ( x  e.  w  /\  w  C_  z ) ) ) ) )
873, 84, 86sylanbrc 647 1  |-  ( ( J  e.  1stc  /\  A  e.  V )  ->  ( Jt  A )  e.  1stc )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708   _Vcvv 2958    i^i cin 3321    C_ wss 3322   ~Pcpw 3801   U.cuni 4017   class class class wbr 4215    e. cmpt 4269   omcom 4848   ran crn 4882  (class class class)co 6084    ~<_ cdom 7110   ↾t crest 13653   Topctop 16963   1stcc1stc 17505
This theorem is referenced by:  lly1stc  17564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-oadd 6731  df-er 6908  df-map 7023  df-en 7113  df-dom 7114  df-fin 7116  df-fi 7419  df-card 7831  df-acn 7834  df-rest 13655  df-topgen 13672  df-top 16968  df-bases 16970  df-topon 16971  df-1stc 17507
  Copyright terms: Public domain W3C validator