Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1to3vfriendship Structured version   Unicode version

Theorem 1to3vfriendship 28299
Description: The friendship theorem for small graphs: In every friendship graph with one, two or three vertices, there is a vertex which is adjacent to all other vertices. (Contributed by Alexander van der Vekens, 6-Oct-2017.)
Assertion
Ref Expression
1to3vfriendship  |-  ( ( A  e.  X  /\  ( V  =  { A }  \/  V  =  { A ,  B }  \/  V  =  { A ,  B ,  C } ) )  -> 
( V FriendGrph  E  ->  E. v  e.  V  A. w  e.  ( V  \  {
v } ) { v ,  w }  e.  ran  E ) )
Distinct variable groups:    v, A, w    v, B, w    v, C, w    v, E, w   
v, V, w    w, X
Allowed substitution hint:    X( v)

Proof of Theorem 1to3vfriendship
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 1to3vfriswmgra 28298 . 2  |-  ( ( A  e.  X  /\  ( V  =  { A }  \/  V  =  { A ,  B }  \/  V  =  { A ,  B ,  C } ) )  -> 
( V FriendGrph  E  ->  E. v  e.  V  A. w  e.  ( V  \  {
v } ) ( { w ,  v }  e.  ran  E  /\  E! x  e.  ( V  \  { v } ) { w ,  x }  e.  ran  E ) ) )
2 prcom 3874 . . . . . . 7  |-  { w ,  v }  =  { v ,  w }
32eleq1i 2498 . . . . . 6  |-  ( { w ,  v }  e.  ran  E  <->  { v ,  w }  e.  ran  E )
43biimpi 187 . . . . 5  |-  ( { w ,  v }  e.  ran  E  ->  { v ,  w }  e.  ran  E )
54adantr 452 . . . 4  |-  ( ( { w ,  v }  e.  ran  E  /\  E! x  e.  ( V  \  { v } ) { w ,  x }  e.  ran  E )  ->  { v ,  w }  e.  ran  E )
65ralimi 2773 . . 3  |-  ( A. w  e.  ( V  \  { v } ) ( { w ,  v }  e.  ran  E  /\  E! x  e.  ( V  \  {
v } ) { w ,  x }  e.  ran  E )  ->  A. w  e.  ( V  \  { v } ) { v ,  w }  e.  ran  E )
76reximi 2805 . 2  |-  ( E. v  e.  V  A. w  e.  ( V  \  { v } ) ( { w ,  v }  e.  ran  E  /\  E! x  e.  ( V  \  {
v } ) { w ,  x }  e.  ran  E )  ->  E. v  e.  V  A. w  e.  ( V  \  { v } ) { v ,  w }  e.  ran  E )
81, 7syl6 31 1  |-  ( ( A  e.  X  /\  ( V  =  { A }  \/  V  =  { A ,  B }  \/  V  =  { A ,  B ,  C } ) )  -> 
( V FriendGrph  E  ->  E. v  e.  V  A. w  e.  ( V  \  {
v } ) { v ,  w }  e.  ran  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    \/ w3o 935    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698   E!wreu 2699    \ cdif 3309   {csn 3806   {cpr 3807   {ctp 3808   class class class wbr 4204   ran crn 4871   FriendGrph cfrgra 28279
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9036  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-card 7816  df-cda 8038  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284  df-nn 9991  df-2 10048  df-n0 10212  df-z 10273  df-uz 10479  df-fz 11034  df-hash 11609  df-usgra 21357  df-frgra 28280
  Copyright terms: Public domain W3C validator