Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2atmat0 Unicode version

Theorem 2atmat0 29642
Description: The meet of two unequal lines (expressed as joins of atoms) is an atom or zero. (Contributed by NM, 2-Dec-2012.)
Hypotheses
Ref Expression
2atmatz.j  |-  .\/  =  ( join `  K )
2atmatz.m  |-  ./\  =  ( meet `  K )
2atmatz.z  |-  .0.  =  ( 0. `  K )
2atmatz.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
2atmat0  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q
)  =/=  ( R 
.\/  S ) ) )  ->  ( (
( P  .\/  Q
)  ./\  ( R  .\/  S ) )  e.  A  \/  ( ( P  .\/  Q ) 
./\  ( R  .\/  S ) )  =  .0.  ) )

Proof of Theorem 2atmat0
StepHypRef Expression
1 simpl 444 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q
)  =/=  ( R 
.\/  S ) ) )  ->  ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A ) )
2 simpr1 963 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q
)  =/=  ( R 
.\/  S ) ) )  ->  R  e.  A )
3 simpr2 964 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q
)  =/=  ( R 
.\/  S ) ) )  ->  S  e.  A )
43orcd 382 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q
)  =/=  ( R 
.\/  S ) ) )  ->  ( S  e.  A  \/  S  =  .0.  ) )
5 simpr3 965 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q
)  =/=  ( R 
.\/  S ) ) )  ->  ( P  .\/  Q )  =/=  ( R  .\/  S ) )
6 2atmatz.j . . 3  |-  .\/  =  ( join `  K )
7 2atmatz.m . . 3  |-  ./\  =  ( meet `  K )
8 2atmatz.z . . 3  |-  .0.  =  ( 0. `  K )
9 2atmatz.a . . 3  |-  A  =  ( Atoms `  K )
106, 7, 8, 92at0mat0 29641 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  ( S  e.  A  \/  S  =  .0.  )  /\  ( P  .\/  Q )  =/=  ( R 
.\/  S ) ) )  ->  ( (
( P  .\/  Q
)  ./\  ( R  .\/  S ) )  e.  A  \/  ( ( P  .\/  Q ) 
./\  ( R  .\/  S ) )  =  .0.  ) )
111, 2, 4, 5, 10syl13anc 1186 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q
)  =/=  ( R 
.\/  S ) ) )  ->  ( (
( P  .\/  Q
)  ./\  ( R  .\/  S ) )  e.  A  \/  ( ( P  .\/  Q ) 
./\  ( R  .\/  S ) )  =  .0.  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2552   ` cfv 5396  (class class class)co 6022   joincjn 14330   meetcmee 14331   0.cp0 14395   Atomscatm 29380   HLchlt 29467
This theorem is referenced by:  2atm  29643  trlval3  30303  cdleme22b  30457  cdlemg31b0N  30810  cdlemh  30933
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-undef 6481  df-riota 6487  df-poset 14332  df-plt 14344  df-lub 14360  df-glb 14361  df-join 14362  df-meet 14363  df-p0 14397  df-lat 14404  df-clat 14466  df-oposet 29293  df-ol 29295  df-oml 29296  df-covers 29383  df-ats 29384  df-atl 29415  df-cvlat 29439  df-hlat 29468  df-llines 29614
  Copyright terms: Public domain W3C validator