MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2dom Structured version   Unicode version

Theorem 2dom 7179
Description: A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004.)
Assertion
Ref Expression
2dom  |-  ( 2o  ~<_  A  ->  E. x  e.  A  E. y  e.  A  -.  x  =  y )
Distinct variable group:    x, y, A

Proof of Theorem 2dom
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 df2o2 6738 . . . 4  |-  2o  =  { (/) ,  { (/) } }
21breq1i 4219 . . 3  |-  ( 2o  ~<_  A  <->  { (/) ,  { (/) } }  ~<_  A )
3 brdomi 7119 . . 3  |-  ( {
(/) ,  { (/) } }  ~<_  A  ->  E. f  f : { (/) ,  { (/) } } -1-1-> A )
42, 3sylbi 188 . 2  |-  ( 2o  ~<_  A  ->  E. f 
f : { (/) ,  { (/) } } -1-1-> A
)
5 f1f 5639 . . . . 5  |-  ( f : { (/) ,  { (/)
} } -1-1-> A  -> 
f : { (/) ,  { (/) } } --> A )
6 0ex 4339 . . . . . 6  |-  (/)  e.  _V
76prid1 3912 . . . . 5  |-  (/)  e.  { (/)
,  { (/) } }
8 ffvelrn 5868 . . . . 5  |-  ( ( f : { (/) ,  { (/) } } --> A  /\  (/) 
e.  { (/) ,  { (/)
} } )  -> 
( f `  (/) )  e.  A )
95, 7, 8sylancl 644 . . . 4  |-  ( f : { (/) ,  { (/)
} } -1-1-> A  -> 
( f `  (/) )  e.  A )
10 p0ex 4386 . . . . . 6  |-  { (/) }  e.  _V
1110prid2 3913 . . . . 5  |-  { (/) }  e.  { (/) ,  { (/)
} }
12 ffvelrn 5868 . . . . 5  |-  ( ( f : { (/) ,  { (/) } } --> A  /\  {
(/) }  e.  { (/) ,  { (/) } } )  ->  ( f `  { (/) } )  e.  A )
135, 11, 12sylancl 644 . . . 4  |-  ( f : { (/) ,  { (/)
} } -1-1-> A  -> 
( f `  { (/)
} )  e.  A
)
14 0nep0 4370 . . . . . 6  |-  (/)  =/=  { (/)
}
1514neii 2603 . . . . 5  |-  -.  (/)  =  { (/)
}
16 f1fveq 6008 . . . . . 6  |-  ( ( f : { (/) ,  { (/) } } -1-1-> A  /\  ( (/)  e.  { (/) ,  { (/) } }  /\  {
(/) }  e.  { (/) ,  { (/) } } ) )  ->  ( (
f `  (/) )  =  ( f `  { (/)
} )  <->  (/)  =  { (/)
} ) )
177, 11, 16mpanr12 667 . . . . 5  |-  ( f : { (/) ,  { (/)
} } -1-1-> A  -> 
( ( f `  (/) )  =  ( f `
 { (/) } )  <->  (/)  =  { (/) } ) )
1815, 17mtbiri 295 . . . 4  |-  ( f : { (/) ,  { (/)
} } -1-1-> A  ->  -.  ( f `  (/) )  =  ( f `  { (/)
} ) )
19 eqeq1 2442 . . . . . 6  |-  ( x  =  ( f `  (/) )  ->  ( x  =  y  <->  ( f `  (/) )  =  y ) )
2019notbid 286 . . . . 5  |-  ( x  =  ( f `  (/) )  ->  ( -.  x  =  y  <->  -.  (
f `  (/) )  =  y ) )
21 eqeq2 2445 . . . . . 6  |-  ( y  =  ( f `  { (/) } )  -> 
( ( f `  (/) )  =  y  <->  ( f `  (/) )  =  ( f `  { (/) } ) ) )
2221notbid 286 . . . . 5  |-  ( y  =  ( f `  { (/) } )  -> 
( -.  ( f `
 (/) )  =  y  <->  -.  ( f `  (/) )  =  ( f `  { (/)
} ) ) )
2320, 22rspc2ev 3060 . . . 4  |-  ( ( ( f `  (/) )  e.  A  /\  ( f `
 { (/) } )  e.  A  /\  -.  ( f `  (/) )  =  ( f `  { (/)
} ) )  ->  E. x  e.  A  E. y  e.  A  -.  x  =  y
)
249, 13, 18, 23syl3anc 1184 . . 3  |-  ( f : { (/) ,  { (/)
} } -1-1-> A  ->  E. x  e.  A  E. y  e.  A  -.  x  =  y
)
2524exlimiv 1644 . 2  |-  ( E. f  f : { (/)
,  { (/) } } -1-1->
A  ->  E. x  e.  A  E. y  e.  A  -.  x  =  y )
264, 25syl 16 1  |-  ( 2o  ~<_  A  ->  E. x  e.  A  E. y  e.  A  -.  x  =  y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177   E.wex 1550    = wceq 1652    e. wcel 1725   E.wrex 2706   (/)c0 3628   {csn 3814   {cpr 3815   class class class wbr 4212   -->wf 5450   -1-1->wf1 5451   ` cfv 5454   2oc2o 6718    ~<_ cdom 7107
This theorem is referenced by:  1sdom  7311
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-id 4498  df-suc 4587  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fv 5462  df-1o 6724  df-2o 6725  df-dom 7111
  Copyright terms: Public domain W3C validator