MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2eu4 Unicode version

Theorem 2eu4 2196
Description: This theorem provides us with a definition of double existential uniqueness ("exactly one 
x and exactly one  y"). Naively one might think (incorrectly) that it could be defined by  E! x E! y ph. See 2eu1 2193 for a condition under which the naive definition holds and 2exeu 2190 for a one-way implication. See 2eu5 2197 and 2eu8 2200 for alternate definitions. (Contributed by NM, 3-Dec-2001.)
Assertion
Ref Expression
2eu4  |-  ( ( E! x E. y ph  /\  E! y E. x ph )  <->  ( E. x E. y ph  /\  E. z E. w A. x A. y ( ph  ->  ( x  =  z  /\  y  =  w ) ) ) )
Distinct variable groups:    x, y,
z, w    ph, z, w
Allowed substitution hints:    ph( x, y)

Proof of Theorem 2eu4
StepHypRef Expression
1 nfv 1629 . . . 4  |-  F/ z E. y ph
21eu3 2139 . . 3  |-  ( E! x E. y ph  <->  ( E. x E. y ph  /\  E. z A. x ( E. y ph  ->  x  =  z ) ) )
3 nfv 1629 . . . 4  |-  F/ w E. x ph
43eu3 2139 . . 3  |-  ( E! y E. x ph  <->  ( E. y E. x ph  /\  E. w A. y ( E. x ph  ->  y  =  w ) ) )
52, 4anbi12i 681 . 2  |-  ( ( E! x E. y ph  /\  E! y E. x ph )  <->  ( ( E. x E. y ph  /\ 
E. z A. x
( E. y ph  ->  x  =  z ) )  /\  ( E. y E. x ph  /\ 
E. w A. y
( E. x ph  ->  y  =  w ) ) ) )
6 an4 800 . 2  |-  ( ( ( E. x E. y ph  /\  E. z A. x ( E. y ph  ->  x  =  z ) )  /\  ( E. y E. x ph  /\ 
E. w A. y
( E. x ph  ->  y  =  w ) ) )  <->  ( ( E. x E. y ph  /\ 
E. y E. x ph )  /\  ( E. z A. x ( E. y ph  ->  x  =  z )  /\  E. w A. y ( E. x ph  ->  y  =  w ) ) ) )
7 excom 1765 . . . . 5  |-  ( E. y E. x ph  <->  E. x E. y ph )
87anbi2i 678 . . . 4  |-  ( ( E. x E. y ph  /\  E. y E. x ph )  <->  ( E. x E. y ph  /\  E. x E. y ph ) )
9 anidm 628 . . . 4  |-  ( ( E. x E. y ph  /\  E. x E. y ph )  <->  E. x E. y ph )
108, 9bitri 242 . . 3  |-  ( ( E. x E. y ph  /\  E. y E. x ph )  <->  E. x E. y ph )
11 19.26 1592 . . . . . . . 8  |-  ( A. x ( A. y
( ph  ->  x  =  z )  /\  A. x A. y ( ph  ->  y  =  w ) )  <->  ( A. x A. y ( ph  ->  x  =  z )  /\  A. x A. x A. y ( ph  ->  y  =  w ) ) )
12 nfa1 1719 . . . . . . . . . . 11  |-  F/ x A. x A. y (
ph  ->  y  =  w )
131219.3 1760 . . . . . . . . . 10  |-  ( A. x A. x A. y
( ph  ->  y  =  w )  <->  A. x A. y ( ph  ->  y  =  w ) )
1413anbi2i 678 . . . . . . . . 9  |-  ( ( A. x A. y
( ph  ->  x  =  z )  /\  A. x A. x A. y
( ph  ->  y  =  w ) )  <->  ( A. x A. y ( ph  ->  x  =  z )  /\  A. x A. y ( ph  ->  y  =  w ) ) )
15 jcab 836 . . . . . . . . . . . . 13  |-  ( (
ph  ->  ( x  =  z  /\  y  =  w ) )  <->  ( ( ph  ->  x  =  z )  /\  ( ph  ->  y  =  w ) ) )
1615albii 1554 . . . . . . . . . . . 12  |-  ( A. y ( ph  ->  ( x  =  z  /\  y  =  w )
)  <->  A. y ( (
ph  ->  x  =  z )  /\  ( ph  ->  y  =  w ) ) )
17 19.26 1592 . . . . . . . . . . . 12  |-  ( A. y ( ( ph  ->  x  =  z )  /\  ( ph  ->  y  =  w ) )  <-> 
( A. y (
ph  ->  x  =  z )  /\  A. y
( ph  ->  y  =  w ) ) )
1816, 17bitri 242 . . . . . . . . . . 11  |-  ( A. y ( ph  ->  ( x  =  z  /\  y  =  w )
)  <->  ( A. y
( ph  ->  x  =  z )  /\  A. y ( ph  ->  y  =  w ) ) )
1918albii 1554 . . . . . . . . . 10  |-  ( A. x A. y ( ph  ->  ( x  =  z  /\  y  =  w ) )  <->  A. x
( A. y (
ph  ->  x  =  z )  /\  A. y
( ph  ->  y  =  w ) ) )
20 19.26 1592 . . . . . . . . . 10  |-  ( A. x ( A. y
( ph  ->  x  =  z )  /\  A. y ( ph  ->  y  =  w ) )  <-> 
( A. x A. y ( ph  ->  x  =  z )  /\  A. x A. y (
ph  ->  y  =  w ) ) )
2119, 20bitri 242 . . . . . . . . 9  |-  ( A. x A. y ( ph  ->  ( x  =  z  /\  y  =  w ) )  <->  ( A. x A. y ( ph  ->  x  =  z )  /\  A. x A. y ( ph  ->  y  =  w ) ) )
2214, 21bitr4i 245 . . . . . . . 8  |-  ( ( A. x A. y
( ph  ->  x  =  z )  /\  A. x A. x A. y
( ph  ->  y  =  w ) )  <->  A. x A. y ( ph  ->  ( x  =  z  /\  y  =  w )
) )
2311, 22bitr2i 243 . . . . . . 7  |-  ( A. x A. y ( ph  ->  ( x  =  z  /\  y  =  w ) )  <->  A. x
( A. y (
ph  ->  x  =  z )  /\  A. x A. y ( ph  ->  y  =  w ) ) )
24 19.26 1592 . . . . . . . . 9  |-  ( A. y ( A. y
( ph  ->  x  =  z )  /\  A. x ( ph  ->  y  =  w ) )  <-> 
( A. y A. y ( ph  ->  x  =  z )  /\  A. y A. x (
ph  ->  y  =  w ) ) )
25 nfa1 1719 . . . . . . . . . . 11  |-  F/ y A. y ( ph  ->  x  =  z )
262519.3 1760 . . . . . . . . . 10  |-  ( A. y A. y ( ph  ->  x  =  z )  <->  A. y ( ph  ->  x  =  z ) )
27 alcom 1568 . . . . . . . . . 10  |-  ( A. y A. x ( ph  ->  y  =  w )  <->  A. x A. y (
ph  ->  y  =  w ) )
2826, 27anbi12i 681 . . . . . . . . 9  |-  ( ( A. y A. y
( ph  ->  x  =  z )  /\  A. y A. x ( ph  ->  y  =  w ) )  <->  ( A. y
( ph  ->  x  =  z )  /\  A. x A. y ( ph  ->  y  =  w ) ) )
2924, 28bitri 242 . . . . . . . 8  |-  ( A. y ( A. y
( ph  ->  x  =  z )  /\  A. x ( ph  ->  y  =  w ) )  <-> 
( A. y (
ph  ->  x  =  z )  /\  A. x A. y ( ph  ->  y  =  w ) ) )
3029albii 1554 . . . . . . 7  |-  ( A. x A. y ( A. y ( ph  ->  x  =  z )  /\  A. x ( ph  ->  y  =  w ) )  <->  A. x ( A. y
( ph  ->  x  =  z )  /\  A. x A. y ( ph  ->  y  =  w ) ) )
3123, 30bitr4i 245 . . . . . 6  |-  ( A. x A. y ( ph  ->  ( x  =  z  /\  y  =  w ) )  <->  A. x A. y ( A. y
( ph  ->  x  =  z )  /\  A. x ( ph  ->  y  =  w ) ) )
32 19.23v 2021 . . . . . . . 8  |-  ( A. y ( ph  ->  x  =  z )  <->  ( E. y ph  ->  x  =  z ) )
33 19.23v 2021 . . . . . . . 8  |-  ( A. x ( ph  ->  y  =  w )  <->  ( E. x ph  ->  y  =  w ) )
3432, 33anbi12i 681 . . . . . . 7  |-  ( ( A. y ( ph  ->  x  =  z )  /\  A. x (
ph  ->  y  =  w ) )  <->  ( ( E. y ph  ->  x  =  z )  /\  ( E. x ph  ->  y  =  w ) ) )
35342albii 1555 . . . . . 6  |-  ( A. x A. y ( A. y ( ph  ->  x  =  z )  /\  A. x ( ph  ->  y  =  w ) )  <->  A. x A. y ( ( E. y ph  ->  x  =  z )  /\  ( E. x ph  ->  y  =  w ) ) )
36 nfe1 1566 . . . . . . . 8  |-  F/ y E. y ph
37 nfv 1629 . . . . . . . 8  |-  F/ y  x  =  z
3836, 37nfim 1735 . . . . . . 7  |-  F/ y ( E. y ph  ->  x  =  z )
39 nfe1 1566 . . . . . . . 8  |-  F/ x E. x ph
40 nfv 1629 . . . . . . . 8  |-  F/ x  y  =  w
4139, 40nfim 1735 . . . . . . 7  |-  F/ x
( E. x ph  ->  y  =  w )
4238, 41aaan 1811 . . . . . 6  |-  ( A. x A. y ( ( E. y ph  ->  x  =  z )  /\  ( E. x ph  ->  y  =  w ) )  <-> 
( A. x ( E. y ph  ->  x  =  z )  /\  A. y ( E. x ph  ->  y  =  w ) ) )
4331, 35, 423bitri 264 . . . . 5  |-  ( A. x A. y ( ph  ->  ( x  =  z  /\  y  =  w ) )  <->  ( A. x ( E. y ph  ->  x  =  z )  /\  A. y
( E. x ph  ->  y  =  w ) ) )
44432exbii 1581 . . . 4  |-  ( E. z E. w A. x A. y ( ph  ->  ( x  =  z  /\  y  =  w ) )  <->  E. z E. w ( A. x
( E. y ph  ->  x  =  z )  /\  A. y ( E. x ph  ->  y  =  w ) ) )
45 eeanv 2055 . . . 4  |-  ( E. z E. w ( A. x ( E. y ph  ->  x  =  z )  /\  A. y ( E. x ph  ->  y  =  w ) )  <->  ( E. z A. x ( E. y ph  ->  x  =  z )  /\  E. w A. y ( E. x ph  ->  y  =  w ) ) )
4644, 45bitr2i 243 . . 3  |-  ( ( E. z A. x
( E. y ph  ->  x  =  z )  /\  E. w A. y ( E. x ph  ->  y  =  w ) )  <->  E. z E. w A. x A. y ( ph  ->  ( x  =  z  /\  y  =  w )
) )
4710, 46anbi12i 681 . 2  |-  ( ( ( E. x E. y ph  /\  E. y E. x ph )  /\  ( E. z A. x
( E. y ph  ->  x  =  z )  /\  E. w A. y ( E. x ph  ->  y  =  w ) ) )  <->  ( E. x E. y ph  /\  E. z E. w A. x A. y ( ph  ->  ( x  =  z  /\  y  =  w ) ) ) )
485, 6, 473bitri 264 1  |-  ( ( E! x E. y ph  /\  E! y E. x ph )  <->  ( E. x E. y ph  /\  E. z E. w A. x A. y ( ph  ->  ( x  =  z  /\  y  =  w ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1532   E.wex 1537    = wceq 1619   E!weu 2114
This theorem is referenced by:  2eu5  2197  2eu6  2198
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118
  Copyright terms: Public domain W3C validator