MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2expltfac Unicode version

Theorem 2expltfac 13121
Description: The factorial grows faster than two to the power  N. (Contributed by Mario Carneiro, 15-Sep-2016.)
Assertion
Ref Expression
2expltfac  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2 ^ N )  < 
( ! `  N
) )

Proof of Theorem 2expltfac
Dummy variables  x  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5882 . . . 4  |-  ( x  =  4  ->  (
2 ^ x )  =  ( 2 ^ 4 ) )
2 2exp4 13116 . . . 4  |-  ( 2 ^ 4 )  = ; 1
6
31, 2syl6eq 2344 . . 3  |-  ( x  =  4  ->  (
2 ^ x )  = ; 1 6 )
4 fveq2 5541 . . . 4  |-  ( x  =  4  ->  ( ! `  x )  =  ( ! ` 
4 ) )
5 fac4 11312 . . . 4  |-  ( ! `
 4 )  = ; 2
4
64, 5syl6eq 2344 . . 3  |-  ( x  =  4  ->  ( ! `  x )  = ; 2 4 )
73, 6breq12d 4052 . 2  |-  ( x  =  4  ->  (
( 2 ^ x
)  <  ( ! `  x )  <-> ; 1 6  < ; 2 4 ) )
8 oveq2 5882 . . 3  |-  ( x  =  n  ->  (
2 ^ x )  =  ( 2 ^ n ) )
9 fveq2 5541 . . 3  |-  ( x  =  n  ->  ( ! `  x )  =  ( ! `  n ) )
108, 9breq12d 4052 . 2  |-  ( x  =  n  ->  (
( 2 ^ x
)  <  ( ! `  x )  <->  ( 2 ^ n )  < 
( ! `  n
) ) )
11 oveq2 5882 . . 3  |-  ( x  =  ( n  + 
1 )  ->  (
2 ^ x )  =  ( 2 ^ ( n  +  1 ) ) )
12 fveq2 5541 . . 3  |-  ( x  =  ( n  + 
1 )  ->  ( ! `  x )  =  ( ! `  ( n  +  1
) ) )
1311, 12breq12d 4052 . 2  |-  ( x  =  ( n  + 
1 )  ->  (
( 2 ^ x
)  <  ( ! `  x )  <->  ( 2 ^ ( n  + 
1 ) )  < 
( ! `  (
n  +  1 ) ) ) )
14 oveq2 5882 . . 3  |-  ( x  =  N  ->  (
2 ^ x )  =  ( 2 ^ N ) )
15 fveq2 5541 . . 3  |-  ( x  =  N  ->  ( ! `  x )  =  ( ! `  N ) )
1614, 15breq12d 4052 . 2  |-  ( x  =  N  ->  (
( 2 ^ x
)  <  ( ! `  x )  <->  ( 2 ^ N )  < 
( ! `  N
) ) )
17 1nn0 9997 . . . 4  |-  1  e.  NN0
18 2nn0 9998 . . . 4  |-  2  e.  NN0
19 6nn0 10002 . . . 4  |-  6  e.  NN0
20 4nn0 10000 . . . 4  |-  4  e.  NN0
21 6lt10 9941 . . . 4  |-  6  <  10
22 1lt2 9902 . . . 4  |-  1  <  2
2317, 18, 19, 20, 21, 22decltc 10162 . . 3  |- ; 1 6  < ; 2 4
2423a1i 10 . 2  |-  ( 4  e.  ZZ  -> ; 1 6  < ; 2 4 )
25 2nn 9893 . . . . . . . . 9  |-  2  e.  NN
2625a1i 10 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
2  e.  NN )
27 4nn 9895 . . . . . . . . . 10  |-  4  e.  NN
28 simpl 443 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  ->  n  e.  ( ZZ>= ` 
4 ) )
29 nnuz 10279 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
3029uztrn2 10261 . . . . . . . . . 10  |-  ( ( 4  e.  NN  /\  n  e.  ( ZZ>= ` 
4 ) )  ->  n  e.  NN )
3127, 28, 30sylancr 644 . . . . . . . . 9  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  ->  n  e.  NN )
3231nnnn0d 10034 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  ->  n  e.  NN0 )
3326, 32nnexpcld 11282 . . . . . . 7  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( 2 ^ n
)  e.  NN )
3433nnred 9777 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( 2 ^ n
)  e.  RR )
35 2re 9831 . . . . . . 7  |-  2  e.  RR
3635a1i 10 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
2  e.  RR )
3734, 36remulcld 8879 . . . . 5  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ( 2 ^ n )  x.  2 )  e.  RR )
38 faccl 11314 . . . . . . . 8  |-  ( n  e.  NN0  ->  ( ! `
 n )  e.  NN )
3932, 38syl 15 . . . . . . 7  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ! `  n
)  e.  NN )
4039nnred 9777 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ! `  n
)  e.  RR )
4140, 36remulcld 8879 . . . . 5  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ( ! `  n )  x.  2 )  e.  RR )
4231nnred 9777 . . . . . . 7  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  ->  n  e.  RR )
43 1re 8853 . . . . . . . 8  |-  1  e.  RR
4443a1i 10 . . . . . . 7  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
1  e.  RR )
4542, 44readdcld 8878 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( n  +  1 )  e.  RR )
4640, 45remulcld 8879 . . . . 5  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ( ! `  n )  x.  (
n  +  1 ) )  e.  RR )
47 2rp 10375 . . . . . . 7  |-  2  e.  RR+
4847a1i 10 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
2  e.  RR+ )
49 simpr 447 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( 2 ^ n
)  <  ( ! `  n ) )
5034, 40, 48, 49ltmul1dd 10457 . . . . 5  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ( 2 ^ n )  x.  2 )  <  ( ( ! `  n )  x.  2 ) )
5139nnnn0d 10034 . . . . . . 7  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ! `  n
)  e.  NN0 )
5251nn0ge0d 10037 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
0  <_  ( ! `  n ) )
53 df-2 9820 . . . . . . 7  |-  2  =  ( 1  +  1 )
5431nnge1d 9804 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
1  <_  n )
5544, 42, 44, 54leadd1dd 9402 . . . . . . 7  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( 1  +  1 )  <_  ( n  +  1 ) )
5653, 55syl5eqbr 4072 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
2  <_  ( n  +  1 ) )
5736, 45, 40, 52, 56lemul2ad 9713 . . . . 5  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ( ! `  n )  x.  2 )  <_  ( ( ! `  n )  x.  ( n  +  1 ) ) )
5837, 41, 46, 50, 57ltletrd 8992 . . . 4  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ( 2 ^ n )  x.  2 )  <  ( ( ! `  n )  x.  ( n  + 
1 ) ) )
59 2cn 9832 . . . . . 6  |-  2  e.  CC
6059a1i 10 . . . . 5  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
2  e.  CC )
6160, 32expp1d 11262 . . . 4  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( 2 ^ (
n  +  1 ) )  =  ( ( 2 ^ n )  x.  2 ) )
62 facp1 11309 . . . . 5  |-  ( n  e.  NN0  ->  ( ! `
 ( n  + 
1 ) )  =  ( ( ! `  n )  x.  (
n  +  1 ) ) )
6332, 62syl 15 . . . 4  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ! `  (
n  +  1 ) )  =  ( ( ! `  n )  x.  ( n  + 
1 ) ) )
6458, 61, 633brtr4d 4069 . . 3  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( 2 ^ (
n  +  1 ) )  <  ( ! `
 ( n  + 
1 ) ) )
6564ex 423 . 2  |-  ( n  e.  ( ZZ>= `  4
)  ->  ( (
2 ^ n )  <  ( ! `  n )  ->  (
2 ^ ( n  +  1 ) )  <  ( ! `  ( n  +  1
) ) ) )
667, 10, 13, 16, 24, 65uzind4 10292 1  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2 ^ N )  < 
( ! `  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   1c1 8754    + caddc 8756    x. cmul 8758    < clt 8883    <_ cle 8884   NNcn 9762   2c2 9811   4c4 9813   6c6 9815   NN0cn0 9981   ZZcz 10040  ;cdc 10140   ZZ>=cuz 10246   RR+crp 10370   ^cexp 11120   !cfa 11304
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-rp 10371  df-seq 11063  df-exp 11121  df-fac 11305
  Copyright terms: Public domain W3C validator